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Filtering of Spatially Invariant Image Sequences

with One Desired Process

Youngin Oh
Mando Machinery Co., Research and Development Center

This paper reports several mathematical
properties of the filter vector developed for
processing

linearly-additive spatially-invariant

image sequences. In this filtering of an image se-
quence into a single filtered image, the information
about the image components originally distributed
over the entire sequence is compressed into the
one new image in a way that the desired com-
ponent is enhanced and the undesired (interfering)

components and noise are suppressed.

Introduction

Spatially-invariant image sequence is a se-
quence of images of the same scene or object with
no relative object-sensor motion. The basic charac-
teristic of a spatially-invariant image sequence is
that all image features are in the same spatial posi-
tion in each image of the sequence. The sequence
is obtained by the variation of some property of the
object or imaging system (other than motion), such
that the image intensity (gray scale value) of the
features (but not the location) qhanges from image

to image.

An image sequence processing algorithm,
based on a feature reduction technique used in
statistical pattern recognition known as simul-
was

taneous introduced by

Miller[1, 2] and extended by Abd-Allah [3]. The new

diagonalization,

520

technique, called the simultaneous-diagonalization
(SD) transform, has been applied to the filtering of
spatially-invariant image sequences to generate a
single new image in which a desired process or fea-
ture is enhanced while other undesired processes
or features are suppressed. The SD transform was
developed for analyzing medical image sequences

with multiple physiological processes.

Spatially-Invariant Image Sequences

In a spatially-invariant image sequence, since
the formation processes are spatially-invariant, the

process contribution 6.,.(ij,k) is decomposable into

the product of two factors:

Om(iiK) = Sm(K)pm(iD), (M

where ¢ (ij) is the spatial distribution (gray-scale
map) of the mth process and s,,(k) is the signature

of the mth process over the sequence.

Many spatially invariant image sequences
have the properties that the various image com-
ponents contribute linearly and additively (perhaps
after a point transformation, as the logarithm for x-
ray images) to each image of the sequence. For

such processes, the gray-scale value repre-

sentation g(i,j,k) of the pixel at location (i,j) in the



kth image of a linearly additive spatially-invariant

image sequence corrupted by noise is

p
glijk) = 2 (2

m=

1sm(k)¢m(i:j) + (i k).

Linear Filtering of Image Sequences

The linear filtering of an image sequence to

obtain a single new image is described by

n
rij) = k§1X(k)9(iyi.k) 3

in which x(k) is the kth element of the filter weight-
ing function and r(i,j) is the scalar gray-scale value

at (i,j) of the new image that results from filtering.

Applied to the linearly additive spatially-in-

variant image sequence (2), the filtered image is

i) = 2 wm(i,j)% X(K)sp(k) + %x(k)n(i,j,k), 4)

or in vector notation,

®)

(i) = 2 pm()<X.$m> + <x.n(ij)>,
m

< > denotes the inner or dot product of two vec-

tors.

One desirable goal of the filter vector x is to
collect or compress the information of a specific
image formation process which is distributed over
the image sequence into one composite image
while aiso suppressing other image formation

processes and noise.

In this form, it is clear that < x, s,> deter-
mines the amount of the mth component present in
the filtered image, while ¢ (i,j) describes its dis-

tribution over the image. It is this dot product of the
filter vector x with the image sequence component

signature s, that guides the selection of x to en-

hance a desired component (with signature s
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denoted d) and suppress v undesired components
(with signatures s, denoted u; to u)). It is as-
sumed, and is required for the following results,
thatp = 1 - visless than or equal to the number n
of images in the sequence and that the set of signa-
ture vectors { s, } are linearly independent. in-
deed, if x were selected as a vector orthogonal to
the set of undesired processes {uq }, they would
be completely eliminated from the filtered image

(5.

Filter Design Criterion

To provide a quantitative criterion for the
selection of the filter vector, (5) suggests the ener-
gy ratio

Eq

rex) = E, +E, (6)

where the desired component energy is

™

the undesired component energy is
3 2
E, = 2 <x, ug>
q=1

= X[ 3 uqug Ix ®)
q=1

and the noise energy for white noise with

covariance matrix w! is

t
wX X.

xt[wl]x

E, )
Denoting U = [ Uju,...u, ] , the filter design

criterion (6) to be maximized with respect to x can

be written
t ot t
x dd x X AX
e = v v — =7— (10)
x (UU + wh)x x Bx

which is a generalization of Rayleigh’s quotient(4].



Setting the gradient with respect to x of (10)

equal to zero to maximize rg(x), (10) can be trans-

formed into the generalized eigenvector problem

AX (1)

re(x)Bx.

Or, since B is positive definite for v > 0, (11) can

be expressed as

B 'Ax = rg(x)x (12)

in which the energy ratio rg(x) is an eigenvalue and

the filter vector x is an eigenvector of B 'A. Since

the objective here is to obtain the filter x,,, which

will maximize the energy of the desired image for-
mation process relative to the undesired image for-

mation process and noise, X,,, is chosen to be the

eigenvector associated with the largest eigenvalue

re(Xmax)- The N X n matrix B is nonsingular (rank n)

and positive definite for w > 0; the n x n matrix A is

singular (rank 1) and positive semidefinite, with
positive eigenvalue d'd and corresponding eigen-
vector d. The nx n matrix B~ 'Ais singular (rank 1),
with only one nonzero (positive) eigenvalue. That

nonzero eigenvalue rg(Xm,y) and the corresponding

eigenvector x = Xq,,, satisfying

UU' + o) dd'x = rg(ox (13)

are the desired filter vector x = X, and maxi-

mum filtered energy ratio rg(Xpmay)-

Filter Derivation

Aithough (13) can be readily solved with stand-
ard algorithms that calculate eigenvalues and
eigenvectors, important properties of this filter can
be observed by obtaining an explicit soiution for the
filter vector x. The following is a completely general

derivation of the filter.
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In (13), the maximum eigenvalue rg(Xpa,) €an

the matrix

Being of rank 1,

be obtained since

(UU' + o) 'dd' is of rank 1.

directly,

(UU' + wh)~'dd! has only one non-zero eigenvalue
and the trace of (UUt + wl)"1ddt equals the maxi-
mum eigenvalue (the only non-zero value). So, the

maximum eigenvalue is
t -1 1
rEXmax) = Trace((UU +wl) dd )
t ot -1
= Trace(d (UU + wl) d)
= d'wu' +wiy g,

(14)

since the latter expression is a scalar. Substituting

this expression for rz(Xa,) into (13), we get

- t _
UU' + o) 'dd'% = xd'@WU' +wn ',  (15)
which is satisfied by the fiiter vector solution
t -1
Xmay = 2(UU + ol 'd (16)

for arbitrary non-zero scalar y. Thatis, rg(x) is maxi-
mized by the eigenvector x.,,, in (16) with eigen-

value re(Xmax)

rE(may) = d'(UU"+ wh)~d. (17)

Limiting Cases of Filter Formulas

The explicit expression in (16) provides the
basis for some interesting special cases, involving
the relative orientation of d and U and of large noise
and small noise energy compared with the energy

of the interfering image formation processes.

1. Orthogonal d and U

If the desired process d is orthogonat to each

of the undesired processes,



u'd = o, (18)
then the filter vector (16) reduces to
x = ad. (19)

In this case, the filtered energy ratio (17) becomes

1.t
re(Xmax) = pdd. (20)
This is an ideal case. By (18) and (19),
t t t
Ux = U(ad) = a(Ud) = 0. (21)

That is, the filter vector x is also orthogonal to
the undesired processes U. From (5), it is clear that

this means that the v undesired processes ug in U
will be completely eliminated by x in the filtered
image. The resuiting filtered energy ratio (17) is the
ratio of only the desired process (signal) energy d'd

and the noise energy w.

2. Large Noise Case

When the image sequence is contaminated by
very large noise, the interfering processes have lit-
tle effect on the filtering scheme. Setting the un-
desired process matrix U = 0 (compared to the size

of w), the resulting filter emphasizes the desired

process d and deemphasizes only noise. In this
case, the filter vector in (16) reduces to
x = ad, (22)
and the energy ratio in (17) becomes
1.t
re(Xmax) = Ejd d. (23)

This special case corresponds to the well-
known matched filter, since the filter vector (16) is a
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scaled version of the desired signature vector d. As
may be recalled, the matched filter is the optimal
solution for filtering a known signal corrupted by
additive ncise based on the ratio of the signal-to-
noise (S/N) energy, which has the form (22) for the

case of white noise.

3. Small Noise Case

If the noise energy is small, then the filter can
focus its effect on the undesired processes.
Through a direct consequence of a well-known
matrix identity, the filter expression in (16) is

changed into

Xmax = a[l - uU'u + wl)"u‘]. (29)

As w — 0, the filter vector (24) approaches

X = liMXpay = @
w->0

[ |- u'ny " ] d, (25)
and the criterion (17) approaches

limrg(xg) = .
w0

(26)

4. Noise-Free Case

In this section, the properties of the noise-free
filter x; in (25) and the origin of the infinite energy
ratio in (26) are explored. When there is no noise

present, the criterion function is now

t, .t

x dd x
I'E(X) = t ! (27)

x UU x
in which the denominator matrix B = UU! is sin-

gular.
Calculating the inner product of
t t t

Ux; = U -~ U)d = 0. (28)



It is this property that makes the denominator of

(27) zero and the ratio infinite.

We observe that x; is orthogonal to every un-
desired signature vector u,, which tells us that the

filtering by this vector eliminates all undesired
processes in the ﬁltere<‘:| image. This is a very
desirable property. That is, this filter vector sup-
presses all of the interfering components of the
image sequence, while the energy associated with
the desired process is kept at the maximum pos-

sible value.

o/

Xg

Figure A

The vector space interpretation of x; is il-

lustrated in Figure A. Let d' be the projection of d
into the plane spanned by the uq’s (denoted by U in

the figure). Then x, d — d’ is one possible form

of the vector orthogonal to all ug’s. Of all vectors
orthogonal to the space of the uq's, this x; has the
greatest correlation with d. The direction of x; can
be provided more directly by well-known relations
in linear algebra. The matrix operator U(U'U)~'U!
calculates the component of a vector in the space
U, so d = y'uy Ul
I — UU'W)~'U" calculates the orthogonal com-
ponent,sod — d' = [I—U(U‘U)”U'} d. Hence, X is

of The operator

in the direction of the component of the desired
process d orthogonal to the undesired processes
u.

The vector x; in (25) is the limiting form of the

vector Xy, from (16) but it is not the only vector or-

thogonal to U. There is a set of vectors orthogonal
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to U, for which the denominator is zero and the ratio

is infinite.

Observe that the n x n matrix UU' is of rank v
< n, so that there are non-zero vectors x for which
UU'x = 0. Let the null space of UU' be denoted by

V. Because U, for n < v is of full rank v, the nuli

space ¥ is
w = {x|UU = 0} = {x|U'x = 0}. (29)
It we let Hy = | - UU'U)~'U!, then we can

represent the null space ¥ with the eigenspace of

the matrix H, with eigenvalue 1. That s,

¥ = {x|Hx = x}. (30)
Since H, is the operator that gives the com-
ponent of a vector orthogonal to U, Both (29) and

(30) define the space of vectors x orthogonal to U.
The following are several properties of the matrix

Hy:

(a) Hy is symmetric. (31)

(b) Hy is idempotent. HgH, =H, (32)
(c) Hy is normal. Hy'Hy = HoH,' (33)
(d) Hy has eigenvalues onlyof 0 or 1.  (34)
(e) rank(Hg) = Trace(Hg)
= Trace [ln - U(UtU)_1Ut:l
= Trace(l,) — Trace [U(U‘U)"u‘]
= Trace(l,) — Trace(l,) = n—v. (35)



Here, 1, is the n x n identity matrix and |, is the v x v
identity matrix. So, the dimension of the null space
Yis

dim(¥) = rank(Hy) = n-v. (36)
Also, the same class given by (29) and (30)

can be found as the collection of vectors x of the

form x = Hgy for some y, because H; is idem-

potent and for some vy,

X Hoy ==> Hgx = HgHgy = Hpy = x. (37)

Therefore, when noise is not present or negli-
gible in the imaging process, the energy ratio will
go to infinity for filter vectors x which construct the

class

¥ = {x|x = Hyy, for some y}. (38)

It is easily seen from (38) that the vector x; in
(25) corresponds to a vector in ¥'. This X is the uni-

que vector in ¥ with the greatest correlation with

the desired signature vector d.

Conclusion

This paper considers the selection of a filter
vector for linear filtering of a sequence of spatially
invariant images of an object or scene to maximize
the ratio of desired component energy to undesired
component and noise energy in the filtered image.
The filtered image is a weighted linear combination
of the images of the sequence, and the filter vector
is the set of weights. Special results are also given
for the cases in which the filter is designed only to

suppress undesired processes or only noise.
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