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Abstract
This paper presents a decomposition method to evaluate

the performance measures of transfer line with unrehable
machine and finite buffers. The proposed method is to
decompose the transfer line into a set of two machine lines
for analysis. Nonhomogeneous lines are considered. In such
lines, the machines may take the different lengths of time
performing operations on parts. A simple transformation is
employed in order to replace the line by a homogeneous line.
The approximate transformation enables one to determine
parameters of performance such as production rate and
average buffer levels, and it also shows better applications
for a large class of systems.

1. INTRODUCTION

The transfer line which consists of a series of machines
separated by buffers is considered. In a transfer line, parts
are processed sequentially by all machines. The performance
of a transfer line is highly influenced by machine failures.
When a machine breaks down, it cannot produce at all.
Meanwhile, the number of parts in the downstream buffer
decreases while the number of parts in the upstrezim buffer
increases. If this condition persists, the downstream butfer
becomes empty and the upstream buffer becomes full.
Consequently, the downstream machines are starved and the
upstream machines are blocked.

An extensive tesearch has been done on the modeling and

analysis of transfer lines. The models of discrete and continu-
ous form have been widely investigated. The discrete model

was first introduced by Buzacot| 1], in which a basic assump-
tion that machines can be broken down or repaired only at
begining of a period was used. This model has been applied
for two-machine lines{7]. The continuous model was origi-
nally proposed by Zimmem. In this case, the quantity of
material in a buffer is a real number. When a machine is
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operational and is neither starved nor blocked, it transfers
material from the upstream buffer to the downstream butfer
continuously at a constant rate. This model has been applied
for two-machine lines. Further work has been carried out to
the analysis of longer transfer lines. An approximate method
was described by Gershwin [4] for the analysis of the
discrete model of long lines. The method was based on the
decomposition of a line into a set of two-machine lines. The
performance parameters can be efficiently computed using
the algorithm proposed by Dallery et al.{3].

The present study is to determine a decomposition method
for performance analysis of nonhomogeneous transfer lines
with operation-dependent failures. The decompsition tech-
nique by Gershwin was emoloyed and was used to approxi-
mate the behavior of the line.

2. THE CONTINUOUS MODEL OF HOMOGENEOUS
LINES
2.1 Continuous model
The flow of discrete parts in the transfer line was approx-
imated by a continuous flow. Therefore, the quantity of
material in each buffer B, at any time t, hy(t), is a real
number taking its value in the interval{0,C;]. In our case the
buffer state is the whole conveyor occupation description.
The buffer level represents the total amount of material on
the conveyor. The conveyor occupation may be expressed as
a relative density function along the conveyor length. The

behavior of the continuous model is defined as follows.
1)} Each machine can be in two states: operational, not in

a failure condition; or down, under repair. Let o(t) indicate
the state of machine M, at time t. o4(t) = 1 if M, is opera-
tional and «(t) = 0 if M, is down.

2) A machine can be starved or blocked. Machine M, is
starved at time t if one of the upstream machines is down
and all buffers in between this machine and machine M, are



empty, i.e., .
J < isuch that o(t) = 0 and h(t) = 0
for all k = j,...,i-1.
Machine M, is blocked at time t if one of the downstream
machines is down and all buffers in between this machine
and machine M, are full, i.e.,
i < i such that o(t) = 0 and h(t) = C,
for all k = i,...,j-1.
Let s(t) and b(t) inicate the starvation and blocking condi-
tions of machine M, at time t: s(t) = 0 if M is starved and
si() = 1 otherwise; by(t) = 0 if M, is blocked and b(t) = 1
otherwise. A machine is idle if it is either starved or
blocked.

3) A machine which is operational, and neither starved nor
blocked, is working. When machine M, is working, it
transfers material from its upstream buffer B, to its down-
stream buffer B, at a continuous rate U. That is, a quantity
of material Udt is transferred in time dt. The processing rate
is the inverse of the processing time, i.e., U = 1/T.(Recall
that for the time being, we only consider homogeneous
lines.)

4) When a machine is working, it may fail. The time to
failure of machine M, is exponentially distributed with rate
A;. That is,

probiei(t +dt)=0/ai(t) =1,5(0)1,b()=1]= pudt+O(dt).
When a machine failes, it is under repair. The time to repair
of machine M, is exponentially distributed with rate y,.
That is

proble;(t-+dt)= 1/ (t) =0} = p.dt + O(dr).
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Fig. 1. A trasnsfer line with four machines.

2.2 Some basic equations

Some basic relationships for steady state performance
parameters of the continuous model of the transfer line L was
established. The following quantities related to machine Mi
are introduced:

L= A/u and e = 1/(1+1]) (1)
where e; is the isolated efficiency of machine M, As only
two parameters of 4,, u, I, ¢ are independent, we choose I,
and p; as the elementary parameters of a machine, and the
other parameters can be obtained from equations (1).

The following performance parameters of the continuous
model in steady state are defined:
E;: probability of machine M, being busy
(also called efficiency),
ps;: probability of machine M; being starved,
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pb;: probability of machine M; being blocked.
Some relationships can be established between performance
parameters. The relation is related to the conservation of
material flow:

E = E, for all i=2,... K
By the definition of efficiency,

E; = probfos(t)=1/s(t)=1,b,(t)=1] * prob|s,(t) =1,b(t) =1 ]
probja(t)=1/s(t)=1,b,(t)=1} is equal to the isolated efficien-
cy of M,, ¢. In the continuous model, the probabitity of a
machine being starved and blocked simultaneously is 0. thus,
we have:

probis(t)=1,b(t)=1}=1-ps;-pb;
which implys :

@

E;=¢(1-ps-pb) for all i=1,.. K 3)
3. ANALYSIS OF THE DECOMPOSITION
3.1 Decomposition

An approximate method which decomposes the K-machine
line L set of K-1 two-machine lines L(i);
i=1,... K-I(figure 2) is proposed. Each line L(i) is com-

into a

posed of an upstream machine, M (i), and a downstream
machine, M(i), separated by a buffer B(i). Machine M,(i)
represents the portion of line L upstream of B;, and machine
M,(i) the portion of line L downstream from B,.

The principle of the decomposition is that the behavior of
the material flow in the buffer B(i) closely matches that of
the flow in buffer B, of line L. It seems natural to choose the .
processing rates of the machines in line L(i) to be equal to 1.
Furthermore, the capacity of buffer B(i) is chosen (o be equal
to that of B,, i.e. C,. Now the unknown parameters of each
line L(i) are the failure and repair rates of the upstream and
downstream machines : A,(t), u,(t), Al), py(t), respectively.
The object of the approximate method is to determine these
parameters.

For the upstream machine of line L(i), we define the
following quantities

L) =AY, ())

€u(i) = py(D/(A (D) + p, (1)) 4
Similary, for the downstream machine, we define

1) =441)/pyD)

€4(1) = pa(1)/ (A4(1) + po(1)) (5

For each line L(1), we define the following performance

parameters.

E() : Efficiency of line L(1). This is the proportion of time
machine M(i) is working.

X(1) : Production rate of line L(i). This is the production of
rate ot machine M,(1).

ps(i) : Probability of machine My(i) being starved in line
L(i).

pb(i) : Probability of machine M,(i) being blocked in line
L1).
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Fig. 2. Decomposition of the four-machine line into three
two-machine lines

The performance parameters are functions of the parameters
of the upstream and downstream machines of L(i). The
efficiency and production rate of line L(i) are again related

X(i)=UE() 6)
Now, by similar arguments as for the derivation of equation
(3), we can obtain

E(1) = e ()(1-pb(i)) Q)]

E(i) = e1)(1-ps(i)) (8)
As stated earlier, the principle of the decomposition is to
determine the characteristics of the machines of each line L(1)
such that the behavior of material flow through buffer B(i)
closely matches that of the flow in buffer B, of line 1.. Espe-
cially, the throughput of line L(i) should be equal to that of
machine M,,, in line L; the probability of machine Mi)
being starved in line L(i) should be equal to that of machine
M,,, in line L; and the probability of machine M,(i) being
blocked in line 1.(1) should be equal to that of machine M; in
fine L. that 1s

for any i=1,...,K-1.

for any i=1,... K-1
for any i=1,...,K-1.

X(@) = X;., for any i=1,... K-l  (9)

ps(i) = psiy, for any i=1,....K-1 (10)

pb(i) = pb, for any i=1,....K-1. (1)
(9) can equivalently be written

E@) = E;, for any i=1,....K-1. (12)

From these relations, a first set of conditions can be derived.
From (12) and the conservation of flow in line L(2), we obt-
ain
E()=E@)=...=E(i)=...=E(k-1).
Using (9),(10), and (11), (3) yields
E(@-1) = e(1-ps(i-1)-pb(i)) for any i=2,...,K. (14)
Now using (7),(8), and (13), after some manipulation, (14)

(13)

can be written
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1/efi-y+1/ei) = 1/E(i-1)+ 1/e; foranyi=2,... K-1 (15)
Let us now consider the failure-repair mechanism of the
upstream machine of line L(i). Machine M,(i) models the
part of line L upstream of buffer B,. Therefore, a failure of
M, (i) represents either a failure or a starvation of machine
M.. A starvation of machine M, is a consequence of either a
failure or a starvation of machine M,,. Now a failure or a
starvation of machine M, is represented by a failure of
machine M,(i-1). There, a failure of machine M,(i) results
from either a failure of machine M, or a failure of machine
M,(i-1). Then we have

L) = an(-1) + (1-a)t, (16)
where t,(i) and t, are the mean times to repair (MTTR) of
machines M (i) and M, respectively, and r,(i-1) is the
average residual repair time of machine M,(i-1) when the
starvation of machine M, occurs. As a resuit, the quantity is
given by

a = Ps(i-1) (1)

1,3-1) pfi) (D
After some manipulations, (16) can finally be expressed as
(i) = Xp(3-1) + (1-X) for any i=2,... K-1. (18)
where X = ps(i-1)
LME®)
A similar analysis of the failure-repair mechanism of
machine M(i) yields the following equation:

p() = Yp(i+1) + (1-Y)p;,, foranyi=1,....K-2. (19)

where Y = pb(i+1)

LG)E(G)
Finally, there are boundary conditions.

Al) = A,

) = p

AdK-1) = A,

pdK-1) = py
There is a total of 4(K-1) equations among (13),(15),(18),
(19), and (20) in 4(K-1) unknowns: A,(i),u,(i),and A1),
pi).fori 1,... K-1.

(20)

3.2 NONHOMOGENEOUS LINES

A decomposition method has been presnted for the
approximate analysis of the continuous model of a transfer
line. However, this technique is restricted to the analysis of
homogeneous lines. Now
nonhomogeneous lines are considered. In such lines, ma-
chines may take different lengths of time at machine M,. The
nonhomogeneous lines are initially transtormed into homoge-
neous line. The transformation replace each machine of the
original line by an equivalent single machine. All equivalent
machines have the same processing time T, which is equal to
the processing time of the tastest machine of the original
line. Let A7 and S be the parameters of the equivalent



machine of machine M,. These parameters must be chosen
such that the behavior of the homogeneous line is close to the
behavior of the original line. For two unknown parameters,
we need two equations, the first equation is obtained by
prescribing that the equivalent machine has the same isolated
production rate as the original machine. Let x; and x¢ be the
isolated production rate of the original and the equivalent
machines, respectively. They are given by

x =1 pu 21
T, A+u,
=1 p 22)
T if+p.f
Therefore, the first condition leads to
e T 23)

Astps =T A+
The second condition is related to the repair rate. Since the
repair mechanism of a machine is not dependent on the
behavior of the rest of the line, both machines
should have the same repair rate, i.e.,

W= @4
From (23) and (24), we get
Af = A+H(A+p)T-TYT 25)

Thus, in the homogenization transformation, the failure rate
of the machine is adapted to the new speed of the machine
(25). Since T<T,, we have A° = A,. That was expected, since
the equivalent machine is faster than the original one, its
failure rate must be higher in order to keep the isolated
production rate equal.

4. NUMERICAL RESULTS

In the case of nonhomogeneous lines, several examples are
constdered which are refered to as lines L1 to L3. These
examples are taken in part from {8]. Lines L1
and L2 have K=6 machines while line L3 has K=4 ma-
chines. The data and results are given in Tables 1 - 3,
respectively. Tables 1 - 3 show that decomposition method
works well for nearly homogeneous lines, but for highly
unbalanced lines, the results are not satisfactory. These may
be due to continuous flow approximation and decompositon
technique.
Table 1

LINE L1 Nonhomogeneous Line

1 2 3 4 5 6
Ti 0.356 0.28 0.28 0.28 0.28 0, 347
174 9.24 45 45 45 45 9.24
1/7ui 0.76 5 5 5 5 0.76
Ci 4 2 2 2 2 1
Qi Q2 Qs Qs Qs X
Simula, 1.4 0.9 0.88 0.88 2.26 2,116
Decomp. 1.69 0.89 0.91 0.93 2,03 2.165
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Table II

LINE L2 Nonhomogeneous Line

1 2 3 4 5 6
Ti 0.35 0.25 0.30 0.32 0.30 0.31
1744 30 14 35 40 36 14
1/ui 4 6.5 10 8.5 12 3.5
Ci 100 100 150 250 250
Q Q Q3 Q4 Qs X
Simula. 55 54 61 89 52 2.3
Decomp. 57.1 56.1 69.2 97.3 66.3 2.24
Table II

LINE L3 Nonhomogeneous Line

1 2 3 4
Ti 1.5 1 0.8 1.6
1/xi 100 140 190 250
1/4; 12 18 35 12.5
Ci 20 20 15
Q Q@ Q X
Simula, 6.1 11.511.8 0.556
Decomp. 7.7 9.2 9.8 0.515

Tables 4 and 5 are the results of real production line.
Although the performance of a transfer line is highly
influnced by blocking and starvation, the results using
decomposition method are an approximate estimation of those
of original lines.

Table N

LINE L4 Nonhomogeneous Line

1 2 3 4 5 6
Ti 14.5 14.314.316.8 14.4 14.6
1/hi 1317 130 451 645 744 427
1/4i 20 25 23 24 42 30
i 3 3 3 3 3 3
Q Q Q@ Qs Q G
Simula, 2.93 2,49 2.852.51 2,77 2.77
Decomp. 2.92 2.532.782.402.71 2.70
7 8 9 10 11 12
Ti 15.8 14.5 15.4 16.6 16.1 18.4
/A 172 134 175 161 104 265
1/pi 48 34 20 29 32 20
Ci 3 3 3 3 3 3
Q QB Q Qo Q1 X
Simula, 1.52 1.48 2,03 1.63 0.90 0.044
Decomp. 1.75 1.66 1,93 1.61 0.98 0.041




Table V
LINE L5 Nonhomogeneous Line

1 2 3 4 5 [
Ti 7.0 3.0 3.512.811.0 4.8
17X 1317 130 451 645 744 427
174 20 25 23 24 42 30
Ci 3 3 3 3 3 3
Q Q@ Q@ 'Q Q5 Qs
Simula, 2.73 2.80 2.832.39 2.10 2.64
Decomp. 2.68 2.76 2.84 2.11 1.83 2.33
7 8 9 10 11 12
Ti 11.010.0 10.0 15.0 15.0 6.0
1/7%: 172 134 175 161 104 265
1/ui 48 34 20 29 32 2
Ci 3 3 3 3 3 3
Q7 Q8 Qo Qo Qi1 X
Simula, 2.22 2,04 2,21 1.36 0.13 0.044
Decomp. 2.06 2.07 2.14 1.32 0.27 0.036

5. CONCLUSION

In this paper, we have presented an approximate technique
tor the analysis of transfer lines with unreliable machines and
finite buffers. The behavior of the line was approximated by
a continuous model and analyzed by means of a decompo-
sition technique. One advantage of using the continuous
model is that the equations involved in the decomposition are
readily derived and accurately satisfied. This paper is to
present a simple way of analyzing nonhomogeneous lines by
introducing the simple transformation. The transformation
has enabled us to replace the original line by a homogeneous
line whose performance is close to that of the original line.
The results obtained showed that this transformation is very
satisfactory.  We obtained the result for extending the
decomposition technique to real nonhomogeneous lines. Such
an extention would be useful for analizing lines with very
different processing times in which cases the results are
further to be improved.
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