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Abstract — Current available methods for generating
assembly sequences have a large undesirable search-space.
This paper presents a method for reducing the search-space.
The method acquires explicitly assembly constraints caused
by not only the geometry of parts but also the connectivity
between the parts, in simplified form. Then the method
generates assembly sequences without searching undesirable
tasks using the assembly constraints. If these undesirable
tasks are excluded, assembly sequences can be generated by
searching only a fraction of all assembly tasks for a product
and its subassemblies.

I. INTRODUCTION

In manufacturing industries, assembly is an important
application area in robotics since assembly accounts for
major portion of not only the manufacturing cost of a pro-
duct but also the labor force[1]. Many important things in
assembly are determined by the sequence of assembly
tasks[2]. Hence, the assembly sequence must be carefully
selected so that it produces the best output. For optimal
assembly sequencing, a planner must have the ability to

search all assembly sequences.

To generate assembly sequences, current available
methods[2-6]

disassembly tasks[3-6], and then they exclude undesirable

search either all assembly tasks[2] or

ones. However, the number of tasks searched by these
methods explosively increases as the number of parts rises.
Moreover, considerable parts of the tasks searched by these
methods are not desirable. The ratio of undesirable tasks to
desirable ones greatly rises, as the complexity of a product

and the number of parts increase.
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The objective of this paper is to present an efficient
method for generating assembly sequences. Assembly
sequencies are generated by recursively disassembling a tar-
get product and its subassemblies without violating assem-
bly constraints. To increase the efficiency, the proposed
method 1) excludes redundancies in assembly constraints,
and 2) excludes undesirable tasks without searching them.
Since the search-space of the proposed method is greatly
reduced, application ranges of the method are expanded

notably.

II. BACKGROUND

A product can be modeled as a connected graph
G(P,L), where P is a set of all parts of the product, and
L is a set of all liaisons of the product in which the liaisons
indicate contact relationships between the parts[2]. Fig. 1
shows a graph model of an electric grinder. Blades b and

d of the grinder are fixed to the motor shaft a by bolts ¢

and e.
.

b d

(a) Shape of a grinder. (b) Model of a grinder.

Fig. 1. The graph model of a grinder.

A subassembly is defined as a vertex-induced con-
nected subgraph of the graph model G. Since a subassem-

bly can be expressed uniquely by a set of parts comprising



the subassembly, the graph and set representations of a
subassembly are interchangeably used. A subassembly is
said to be reachable if it can successfully become a target
product by sequentially adding the missing parts. For
instance, a subassembly {a,c,d} of the grinder is not reach-
able because part & cannot be added to the subassembly.

An assembly task is defined as an action which joins a
subassembly to another subassembly to produce a large
subassembly. A task joining more than two disconnected
subassemblies is not considered since the task causes
assembly sequences to be not contact coherent[7]. There
must be at least one liaison between the pair of subassem-
blies joined by an assembly task in model G. Assembly
task which joins a subassembly M to another subassembly
B is represented as M @ B.

The subassembly which is manipulated by such assem-
bly equipment as a robot and a human worker is called a
mating subassembly. The subassembly which is held by
such assembly equipment as the jig, the fixture, and the
work table is called a base subassembly. Since a mating
subassembly is manipulated by assembly equipment it
requires special properties. Parts of a mating subassembly
should be very stably joined each other so that they cannot
be separated by little force in any orientation. A subassem-
bly whose parts are not very stably joined to each other is
not suitable for a mating subassembly because it needs
extra-costs for stablizing the parts during manipulation.
Also, a mating subassembly should be reachable because
unreachable subassembly cannot become a target product.
Hence, we define reachable and very stable subassemblies
as mating subassemblies.

An assembly task is called physically infeasible if it
cannot be executed successfully because of the topology,
geometry, and dimension of parts. Also, an assembly task
is called logically infeasible if the pair of subassemblies
joined by the task are not connected in model G because it
is not contact coherent. The assembly constraints caused
by the geometry of parts are called G-constraints. The
assembly constraints caused by the contact coherence are

called C-constraints.
G-constraints have been acquired by either systematic

question-and-answers with a designer[2,3] or computer
algorithms[5,6]. G-constraints have been represented either
as the precedence relationships(2,3,5] or the infeasibility
conditions[6] as shown in Table 1. However, C-constraints

have been acquired by exhaustive methods such as the con-
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const. exhaustive rep. simplified rep.
- precedence rel. (>, >=)
G-const. | feasibility of tasks | e
infeasibility cond.( @ )
cut-sets . o
C-const. o infeasibility cond. (@ )
connectivity tests
Table 1. Representations of G-constraints and C-
constraints. Operators ‘>’ and ‘“>="" indicate ‘‘must

precede’’ and ‘‘must precede or concurrent with’’, respec-
tively. Operator “‘@’’ indicates ‘‘cannot be joined to’’.
The infeasibility representation of C-constraints will be

presented in Section III.

nectivity tests[2,3] or the cut-sets[4]. De Fazio and Whit-
ney[2] excluded incoherent assembly tasks by checking the

connectivity between the subassemblies joined by each task.
Homem de Mello and Sanderson[4] excluded incoherent

assembly tasks by using the cut-set technique.

Assembly constraints may have many redundancies
because G-constraints and C-constraints are independent of
each other. Also, assembly constraints may have many
redundancies due to their inherent properties. For instance,
an infeasibility condition M @ @, which indicates that a
mating subassembly M cannot be joined to a subassembly

with Q, has the following properties:

[ Property 1 ] An infeasibility condition M @ Q can
cover an infeasibility condition M @0", where 0" is a

superset of Q.

[ Property 2 ] If a part p € P cannot be joined to a set
of parts Q c P due to G-constraints, subassemblies which

contain @ except part p are not reachable.

1. SIMPLIFIED ASSEMBLY CONSTRAINTS

An assembly task is executed by joining a mating
subassembly to a base subassembly. Hence, only the
infeasibility conditions of every mating subassembly are
needed as assembly constraints. Infeasibility conditions of
all subassemblies are not necessarily required as the assem-
bly constraints. Since only a fraction of subassemblies are
suitable for mating subassemblies, the introduction of mat-

ing subassemblies may greatly reduce the complexity in



acquiring assembly constraints as well as in generating
assembly sequences. The rest of this section will summar-

ize methods for acquiring the simplified assembly
constraints by removing redundancies in the assembly con-

straints.

A. THE SIMPLIFIED G-CONSTRAINTS

A mating subassembly cannot be joined to a base
subassembly if the base subassembly blocks all the paths of
We assume

the mating subassembly. that a mating

subassembly M has a finite number of paths. A mating
subassembly M cannot be joined to a subassembly which
contains at least one part for every path that blocks the
path. Hence, one obvious method for acquiring G-
constraints of a mating subassembly M is to enumerate all
subassemblies that block all the paths of M. However, this
exhaustive method is so inefficient that it cannot be used as

the number of parts increases.

To block all the paths of a mating subassembly M,
subassemblies must contain a set Q which contains one
part for every path of M to block the path. G-constraints
of a mating subassembly M can be simplified by searching
minimal sets, in which a set Q satisfies the following three

conditions:

1) A set QO contains only one part for every path of M to
block the path;

2) A set Q0 must be contained by a subassembly
SNM =@. If there is no subassembly which contains
@, then infeasibility condition M @Q 1is useless due to
C-constraints.

3) Subassemblies containing a set Q except the parts of
M do not contain more than one part which blocks any

path of M. This is due to Property 1.

To show the procedure for acquiring the simplified G-
constraints, we adopt the grinder of Fig. 1 as a simple
example. The meaningful paths of part a are the left and
right directions since part a is contacted to parts b, ¢, d,
and e in a ‘fits’ condition. Part a is blocked by parts
b and ¢ when it is removed to the left. Part a is blocked
by parts d and ¢ when it is removed to the right. Hence,
part @ cannot be joined to subassemblies with {b,d}, {b.e},
{c.d}, or {ce}.

contains any of these sets without containing part a. That

However, there is no subassembly that

is, G-constraints of part @ cannot contribute as assembly
constraints because the G-constraints of part a can be

covered by C-constraints.
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Part b is blocked by part ¢ when it is removed to the
left. Part b is blocked by parts a, d, and e when it is

removed to the right. Hence, part b cannot be joined to

subassemblies with {ac}, {c.d}, or {ce}. However,
subassemblies which contain set {c,d} or {c,e} without con-
taining part b always contain set {ac). So, the G-

constraints of part b can be simplified into one infeasibility
{b) @ {a,c). simplified G-
constraint of part d is acquired. The G-constraint of part d
is {d} @ {a.e}.

G-constraints of parts ¢ and e do not exist because

condition Similarly, the

they have unblocked paths. Once G-constraints of every
part have been acquired, the reachability of all subassem-
blies can be determined due to Property 2. Hence, the
mating subassemblies of the grinder can be acquired from
liaison graph model using the G-constraints of every part.
Among subassemblies of the grinder, reachable and very
stable subassemblies with more than one part are {a,b,c)
and {ad,e}. G-constraints of these mating subassemblies

do not exist because they have unblocked paths. Hence,

the simplified G-constraints of the grinder are {b} @ {a.c}
()@ {ae} .

and

B. THE SIMPLIFIED C-CONSTRAINTS

One obvious method for acquiring C-constraints of a
mating subassembly M is to enumerate all subassemblies
that cause the separation of M from the subassemblies to
be not contact coherent. However, this exhaustive method
is so complex that it is not practical as the number of parts

increases, even though currently the norm.

If a mating subassembly M cannot be separated from
a subassembly S due to the contact coherence, then there is
at least a pair of parts (a,b) which are disconnected by
separating M from subassembly § >({a,b} UM ). Hence,
the C-constraint between a maing subassembly M and its
neighbor parts @ and b can be expressed by a sentence: “‘a
mating subassembly M cannot be separated from a
subassembly S > ({ae,b} M), if S does not contain an
elementary chain which connects parts @ and b without

passing any part of M*’.

The C-constraint between a mating subassembly M
and its neighbor parts @ and b can be simplified using the
following fact: “‘a chain A between parts @ and b is always
broken if another chain A, which is a subset of A, is bro-
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ken’’. But, some chains between parts a and b cannot be

broken because parts of the chains, except parts a and b,



cannot be removed due to G-constraints. Hence, only
chains that can be broken without violating G-constraints,
and which are not superset of any other chain are meaning-
ful in acquiring C-constraints. If a family of these mean-
ingful chains is represented as A, then the C-constraint

between a mating subassembly M and its neighbor parts a
and b can be represented as the infeasibility condition:

M@(lab)&X), forallle A .

In this expression, a chain is expressed by a set of parts
comprising the .chain since the order of parts in a chain is
not critical in determining the existence of the chain. The
operators “‘&’’ and ‘7’ indicate ‘‘and’’ and ‘‘not exist’’,

respectively.

As a simple example, the procedure for acquiring C-
constraints of the grinder in Fig. 1 will be shown. The
acquisition of the simplified C-constraints of part @ begins
by searching its neighbor parts from a liaison graph model
of the grinder. Parts b, ¢, d, and e are neighbors of part a.
There are six pairs of a’s neighbor parts: (b,c), (b.d),
(b.e), (c.d), (c,e), and (d,e). Among them, pairs (b,c)
and (d,e) are discarded because parts of these pairs cannot
be disconnected by removing part a. However, parts of
pairs (b.d), (b.,e), (c,d), and (c,e) are always discon-
nected by removing part a because all the chains between
the parts of these pairs pass part a. Hence, C-constraints
of part a are {a}@ {b,d}, {a) @ {b.,e}, (a)@ {c.d)}, and
{a) @ (c.e). These be

compressed into one infeasibility condition using ”?

infeasibility ~conditions can

‘e

or

operator:

{a)@ [{b,dll{b,el [{cdll {C.el}.

This infeasibility condition means that part a cannot be
joined to a subassembly which contains any of sets {b,d]},
{b,e}, {c.d), and {c,e}.

Parts a and ¢, which are neighbors of part b, cannot
be disconnected by removing part b since these parts are
connected by liaison /,. Also, ¢’s neighbor parts ¢ and b
cannot be disconnected by removing part ¢ since these

parts are connected by liaison /;. Similarly, d’s neighbor
parts @ and e, e’s neighbor parts @ and d cannot be

disconnected by removing parts 4 and e, respectively.
Hence, C-constraints of parts b, ¢, d, and e do not exist.
C-constraints of mating subassemblies {a,b,c] and
{a,d.e} do not exist since neighbor parts of these mating
subassemblies cannot be disconnected by removing these

subassemblies. That is, parts b and ¢, which are neighbors
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of a mating subassembly {a.d,e}, cannot be disconnected
by removing {a,d,e}. Parts d and e, which are neighbors
of a mating subassembly {a,b,c}, cannot be disconnected
by removing {ab,c}. Hence, the simplified C-constraints

of the grinder are
(@@ (b} be] | (cd)  (cel ).

1V. GENERATION OF ASSEMBLY SEQUENCES

Once the mating subassemblies and their simplified
been

sequences are generated by recording all disassembly tasks

assembly constraints have

acquired, assembly
that separate unconstrained mating subassemblies from a
target product and its subassemblies. Since the number of
assembly sequences for a product is very large, the assem-
bly sequences are compactly represented as a labeled,
directed graph. In a directed graph, a task which joins a

mating subassembly M to a base subassembly B is
represented as a labeled link:

M

MUB B.

A procedure for generating assembly sequences
without searching undesirable tasks using assembly con-

straints is as follows:

Given :

(1) The mating subassemblies of a target product P. LetR be a
set of the mating subassemblies.

(2) Simplified assembly constrints of every mating subassembly.

Procedure :
(1) Initialize global variables.
1.1) Create and clear a labeled, directed graph, LDG.
1.2) Create a family of subassemblies, FOS. Let a target
product P be an initial element of FOS .

(2) Among the non-disassembled elements of FOS, choose a
subassembly S which has the largest number of parts. If
subassembly S is an empty set, then Stop.

(3) Create a node of S if the node does not exist in LDG.

(4) Select mating subassemblies of S. A subassembly M € R
cannot be a mating subassembly of S if M is not a subset
of §. Hence, the mating subassemblies of S are acquired
by selecting subassemblies M € R which are subsets of S .

(5) Select unconstrained mating subassemblies of S. That is,
mating subassemblies of S whose infeasibility conditions of
both G-constraints and C-constraints are null are selected.

(6) For each mating subassembly M which has been selected in
Step (6),

6.1) Record an assembly task M @ (S — M) in LDG. The



two steps for recording the assembly task are as fol-

lows:
a) Create a node of S — M if the node does not
exist in LDG.
b) Connect the node of S — M to the node of S
by a link whose label is M .

6.2) Insert M and S ~M into FOS.
(7) Go to Step (2).

As a simple example, consider the grinder in Fig. 1.
Once the mating subassemblies of the grinder and their
simplified assembly constraints have been acquired as
shown in Section III. The procedure for generating assem-
bly sequences begins by creating a node of the grinder.
Among the mating subassemblies of the grinder, only
subassemblies {c}, {e}, {a.b.c}, and {a.de} are uncon-
strained. The other mating subassemblies {#)} and {d} can-
not be separated from the grinder due to the assembly con-
straints. Hence, desirable assembly tasks for the grinder are
(c}@ {abde}, le}@ {ab,cd}, {abc)@ (de}, and
{a,de} @ {b,c}. These tasks are represented graphically as
the first level in Fig. 2. From these tasks, subassemblies
(c}), {abd.e), {e}, {ab,cd}, {abc), {de), {ade), and
{b,c}, are newly enrolled in FOS.

Among the non-disassembled elements of FOS, a
subassembly {a,b,cd} is selected to be disassembled
because it contains the largest number of parts. The mating
subassemblies of a subassembly {a,b,c,d} are acquired from
the mating subassemblies of the grinder by removing the
subassemblies with part ¢. The set of mating subassem-
blies of {a,b,c,d} is

R’ ={ {al,{bL(C}.{dl,{a.b,c}}-

Of the mating subassemblies of the grinder, subassemblies
{e} and (ade) cannot be mating subassemblies of
{a.b,c,d} because they are not subsets of {a,b,c,d}.

{a,b,c.d),

subassemblies {c}, (d}, and {a,b,c} are not constrained.

Among the mating subassemblies of
The other mating subassemblies {a} and {b} cannot be
separated from subassembly {a,b,c,d} because their infeasi-
bility conditions are not null in subassembly {a,b,c,d]}.
Hence, the desirable assembly tasks for a subassembly
{c}@ (a,bd}, {d}@ {a,b,c}, and
{a.b,c} @ {d}. These tasks are represented graphically as

{a,b,c.d} are

the second level in Fig. 2. From these tasks, subassemblies

{a.b.d} and {d} are enrolled as new elements of FOS.
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| (a,b,c,d,e} I

{abf} (g} {¢} e}

| {de}| [ {abcd) |[ (abde} ] [ (bc)]

{c {a,b,c} {d}

{a.b.d} |

[ {d) ] [{abcl]

Fig. 2. Disassembly tasks for the grinder and {a,b,c.d}.

Repeating the procedure for disassembling the other
subassemblies until all the elements of FOS are completely
disassembled, then assembly sequences for the grinder are
represented compactly as shown in Fig. 3. In this figure,
the label of each directed link is omitted for the conveni-

ence of representation.

Once assembly sequences for a product have been

generated, the optimal selected

sequence may be

Fig. 3. Assembly sequences for the grinder.

bautomatically using a graph search technique[9], and
appropriate evaluation criteria[8]. An assembly sequence
can be selected manually by a designer after reducing the
number of assembly sequences by imposing interactively

additional assembly constraints as in Baldwin ez al[3].

V. CONCLUSION

The generation of all assembly sequences is so com-
plex that it is nearly impossible to generate them without
using efficient algorithms, as the number of parts as well as

the complexity of a product increase. This paper has



presented an efficient method for generating assembly
sequences without searching undesirable tasks. Not to
search undesirable tasks it has acquired assembly con-

straints from a graph model of a target product. Then, it
has generated the assembly sequences by separating recur-

sively unconstrained mating subassemblies from a target
product and its subassemblies. To increase the efficiency in
generating assembly sequences, it has simplified the assem-

bly constraints by excluding their redundancies.

Table 2 shows both the number of cut-sets vs the
number of simplified C-constraints and the number of phy-
sically

infeasible assembly the number of

tasks vs
simplified G-constraints for three products, i.e. the grinder
in Fig. 1, the AFI in Fig. 4-a of Reference [2], and the
automobile alternator in Fig. 4-b of Reference [10]. Table
3 shows the numbers of tasks for these products searched
by the method of De Fazio and Whitney[2], by the method
of Homem de Mello and Sanderson[4], and by the proposed

method.

Sy
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(a) Model of AFI.

(b) Model of alternator.
Fig. 4. Models of AFI and an alternator.

These tables show the following important things :

1) The number of cut-sets increases explosively as the
number of parts rises.

2) Most of the assembly tasks that are acquired by cut-
sets are infeasible due to G-constraints.

3) The numerous physically infeasible assembly tasks,
which are exhaustive representation of the G-
constraints, can be compactly represented as the
simplified G-constraints.

4) The numerous cut-sets, which are exhaustive represen-
tation of the C-constraints, can be compactly
represented as the simplified C-constraints.

4) The number of tasks searched by the proposed method

is greatly less than that of any other method.

Product Cut-Sets | C-const. | Infeasible T. | G-const.
grinder 26 4 6 2
AFI 1063 48 842 27
alternator 949 27 662 37

Table 2. The numbers of cut-sets, physically infeasible as-

sembly tasks, and simplified assembly constraints.

Product De Fazio’s M. | Homem’s M. | Proposed M.
grinder 26 35 18
AFI 963 578 154
alternator 959 1134 123

Table 3. The numbers of tasks searched by the method of
De Fazio and Whitney, by the method of Homem de Mel-
lo and Sanderson, and by the proposed method.
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