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Abstract

In this paper, a modal analysis is applied for a hung
Euler-Bernoulli beam with a lumped mass. We first de-
rive the equations of motion using the Hamillton’s prin-
ciple. Then regarding the tension of beam as constant,
we characterize the eigenfrequencies and the feature of
eigenfunctions. The approximation employed here is
corresponding that the lumped mass is sufficiently large
than that of beam. Finally we compare the eigenfre-
quencies derived here with those obtained based on the
Southwell’s method.

1 Introduction

For control of the flexible space structures, the key
step in the synthesis is to clarify he modes and the
feature of corresponding mode shapes are identified.

In the literature, there are many studies for
the typical Euler-Bernoulli beam which discuss the
mode and the corresponding mode shapes. Though
almost all of these studies are restricted to the case
where the tension due to the gravity is negligible
or the case where it has no tip mass. In a few
studies which account the influence of gravity are
concerned with so-called Southwell’s approximation
method. However, it is not obvious that the South-
well’s method is applicable for the hung beam with
a lumped mass.

In this paper, we consider a hung Euler-Bernoulli
beam with a lumped mass. The beam we focus on
can be regarded as a simplified model of the flexi-
ble bodies such as an antenna in spacecraft systems.
And further, the beam has a feature that the mo-
tion is essentially affected by the tension.
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In the following, we first derive equations of mo-
tion using the Hamillton’s principle. Then, regard-
ing the tension of beam as constant, we determine
the eigenfrequencies and the feature of the eigen-
functions. The approximation employed here is
corresponding that the lumped mass is sufficiently
large than that of beam. Finally we compare the
eigenfrequencies derive here with those estimated
based on the two types of Southwell’s approxima-
tion method.

2 Modal Analysis

2.1 Model of system

Consider a hung Euler-Bernoulli beam with a
lumped mass (Figure 1).

The parameters of this beam are defined as fol-
lows: E'is Young’s modulus, I is moment of inertia,
p is density, A is cross section, g is acceleration due
to gravity, m is mass ,L is length and ¢ is time. 6(¢)
is rotation of the beam. z,[m] denotes the length
from supported point and y.(z,,t)[m] is the trans-
verse deformation at z,.

In following, we will refer the non-dimensional
values:

I oy=% (1)
as the length from supported point and the trans-
verse deformation respectively.
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2.2 Equations of motion

Hamillton’s principle is used to derive equations of
motion
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Figure 1: A hung beam model
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where T and U are kinetic and potential energies
of this system. Since the moment of inertia is suffi-
ciently smaller than the other parameters, we ignore
energies of shearing, rotary inertia and torsional.
Under the assumptions that the transverse deflec-
tion y(z,t) and its derivatives d di't are regarded
as small values, we obtain the equations of motion:
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where z, y are the non-dimensional values defined
in equation (1) and S(z) denotes the tension force.

In the sequel, we will assume that the tension
force S(z) can be regarded as constant along the
beam:

S(z)=d

The approximation employed here is corresponding
that the lumped mass is sufficiently large than that
of beam.

2.3 Modal analysis of the Beam with a
Lumped Mass

For the analysis of the free vibration, a harmonic
motion is assumed in the following form:

y(z,t) = ¢(z)q(t), (8)

¢(.’I:) — €i5$¢o,q(t) — eiwtqo

where w is the natural frequency and ¢(z) is the
corresponding eigenfunction. Substituting equation
(8) into equation (4), (5) and (6), we first obtain the
following equations:

i(t) + w?q(t) = 0, (9)
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Then using the relation derived from (8) and
(10):

8 +d(1+4 )8 -w? =0,

we obtain the following equations.
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where A is a constant factor. The equations (13),
(15) determine the value of the natural frequency w
and the equation (14) provides the feature of eigen-
functions.

In case we focus on the gravity-free system, the
natural frequency and the corresponding eigenfunc-
tion are given in the following form:

¢s(z) =
Ag{(cos 8, + cosh é,)(sin 8,z ~ sinh §;2)
~(sin 8, + sinh é,)(cosh 8,z ~ cos §,z)},
(16)

1 + cos 8, cosh 6,
+cé,(cos é, sinh 8, — sin §, cosh §,) = 0,
(17)

o= 8,

(18)
where A, denotes a constant factor.

Comparing the equations (13) and (15) with
(17) and (18) which determine natural frequencies,
we can see that it arises a new term (w?é — :‘5—’3;-)
sindsinh% in the case we focus on the influence of
gravity.
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Table 1: Parameters of the beam

Length 2.0m
Width 0.252m
Thickness lmm

Linear density
Elastic modulus
Moment of inertia
Cross section
A lumped mass

8.8 x10%kg/m3
1.11 10" N/m?
1.25 x10~11m*
2.54 x10~*m?
44.4kg

Table 2: Natural frequencies
(a) the gravity-free case
(b) under the influence of gravity

mode (a) (b)
No. [H 2] [H?Z]
1 0.0862 1.3924
2 2.4700 | 14.3102
3 7.9719 | 29.1769
4 16.6157 | 45.1166

3 Numerical Example

Based on the parameters stated in Table 1, we cal-
culate the lower four eigenfrequencies(Table 2.) and
the corresponding mode shapes(Figure 2.).

Comparing the both cases; the case we focus on
the influence of gravity (13)-(15) and the gravity-
free case (16)-(18), we can see that the eigenfre-
quencies under the influence of gravity is about
three to seventeen times greater than the eigenfre-
quencies of gravity-free case.

Figure 2 shows that the mode shapes under the
influence of gravity are quite different from those
of gravity-free case. There facts indicate that the
mode shapes are affected very strongly by the ten-
sion, especially in the lower mode shapes.

4 Compared with the South-
well’s method

In this chapter, we apply the Southwell’s approxi-
mation method for the hung beam, then compare
the Southwell’s method with the previous result
stated in chapter 2 in the case of the hung beam.

In applying the Southwell’'s method for this
beam, the two types of the approach are employed.

In the first approach, we approximate the eigen-
frequencies by the equation:
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where ¢, is defined in (16) and ¢ is defined as a
solution to

d(1+ )iﬂ—) = §(z,1). (20)

In the second approach, we approximate the
eigenfrequencies by the following equation.

w2=

/01 (%) dz +d(1+c)/ (d¢s(z))

{a) first (b) second / ¢%(z)dzx
0

(21)

In Table 3 and 4, the Southwell’s method is com-
pared with the previous result stated in chapter 2.

Table 3 shows approximated frequencies obtained
by the first approach together with the exact eigen-
frequencies stated in chapter 2. Table 4 shows the
approximated eigenfrequencies obtained by the sec-
ond approach with the exact ones.

From the Table 3, we can see that the approxi-
mated frequencies obtained by the first approach
are very larger than the exact eigenfrequencies.
While Table 4 shows that there is a small difference
in low frequencies between the eigenfrequencies de-
rived in chapter 2 with the approximated eigenfre-
quencies obtained by the second approach. There-

(¢) third (d) fourth fore, in'case of the hung beam under the inﬁuenc.e

of gravity, we can say that the second approach is
better than the first one in order to evaluate the
eigenfrequencies. However, as for the mode shapes
we can say the followings.
The mode shapes corresponding to Table 4 are
Figure 2: Lower four mode shapes. (—the gravity-  illustrated in Figure 3. From Figure 3, we can see
free case ;- - under the influence of gravity) that the approximated mode shapes obtained by
the second approach are quite different from the
exact ones. Especially, the difference appears at
the end of beam. Moreover, in the Southwell’s ap-
proach, the first mode corresponding to the motion
of flexible pendulum is vanished.

5 Conclusion

In this paper, we have analyzed a hung FEuler-
Bernoulli beam with a lumped mass. We first de-
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(a) first (b) second

(c) third

(d) fourth

Figure 3: Lower four mode shapes (—the exact
mode shapes;. - -the approximated mode shapes)
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Table 3: the validity of the Southwell’s method(1)
(a):the exact frequencies

(b):the approximated eigenfrequencies obtained by the first
approach

mode (a) (b) the error
No. [H?2) {Hz] (%]
1 1.3924 | 2.5770 70.1
2 14.3102 | 19.7798 38.2
3 29.1768 | 34.6664 18.8
4 45.1166 | 50.4349 11.7

Table 4: the validity of the Southwell’s method(2)
(a):the exact frequencies

(b):the approximated eigenfrequencies obtained by the
second approach

mode (a) ®) the error
No. [Hz] [Hz] %]
1 1.3924 | 1.4620 12.2
2 14.3102 | 15.7466 10.0
3 29.1769 | 31.0399 6.4
4 45.1166 | 47.4217 5.0

rived the equations of motion using the Hamillton’s
principle. Then regarding the tension of beam as
constant, we characterized the eigenfrequencies and
the feature of corresponding eigenfunctions. Fi-
nally, we compared the eigenfrequencies obtained
based on the two types of Southwell’s approxima-
tion mathod with the exact ones. As a result, it is
indicated for the hung beam that the second South-
well’s approximation is better than the first one in
order to evaluate the eigenfrequencies. However the
corresponding mode shapes do not need the exact
ones.
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