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ABSTRACT

This paper presents a modified model of the Hopfield's
neural network solve programming problem,
Simulation results show that our model gives more exact and
faster answer for solving the linear programming problem.

to linear

%e applied it to flexible manufacturing system case, in
which it is necessary to solve LP problem, i.e. jop-shop

schedul ing.

1. Introduction

There are a number of methods to solve the linear
programming problem. Depending on constraints such as
computation costs and problem size, an appropriate

technique for solving jop-shop schduling can be selected.

In general, a branch and bound search algorithm is

practical for small problems, while for large problems,
heuristic, stochastic, and mathematical approaches are
suggested. Among those, several recent studies [1], [2],
[31 have been made on the scaling property of neural
network, For the first time Hopfield and Tank (1]
presented the fact that linear programming neural

network (LPNN) has the characteristic of scaling to solve LP
problem. However, several [4] criticized Hopfield nets used
because of inability to
find global minimum and poor scaling properties,

Foo and Takefuji {2] employed the TSP-type Hopfield model
and integer programming neural networks to solve jop-shop
scheduling. But later Kennedy and Chua [3} corrected the
error in Hopfield model.

In this paper we adopted the results corrected by Chua,
ad added a new property to neural networks for the

for combinatorial optimization,

purpose of better scaling performance,

2.Linear Programming Formulation

Generally the process of flexible manufacturing system is
described by petri-nets. And jop-shop scheduling in FMS has
been also planned by petri-nets control method [5]. Here we
consider how the information represented by Petri nets can
be converted to the LP problem formulation. Fig. 1 shows an
example modeled by petri nets, The directed arcs between
ordinary place, py, and transition, tyj, the
relations within each distinct jop( inter-operation
conditions ), while the directed arcs between machine
Pai, and transition tell the relationships of
inter-jop condition,

inform
i.e.

place,

R

P13

Fig. 1. Modelling of a jop shop system by Petri nets in the
case of 2 jobs / 3 machines problem.

The mathematical formulation for solving the jop-shop
scheduling problem is described as follows. Let S; denote
the starting time, ty the processing time for operation k
of job i and ki the last opeatation of each job.

n

Min %

i=)

subject to the constranints

Siki (2.1)
i }first operation condition:

Si1 290
ii Jinter-operation condition:

Sit - Siz 2 tiz, if operation (i,2) precedes (i,1)



iii Jinter-jop condition:
Sik - Sip + H(1-ya) 2 tj,
Sjip - Six * Hya 2 tix, 1 smzM
(2.2)

where M is the number of resouces( i.e machines ) and H
represents an arbitrary positive number twice the maximum
processing time, In [2), Foo and Takefuji used H value that

Ye=0or 1,

is greater than the maximum value among all processing
times, But we recognized Foo and Takefuji chosen H value
doesn’t satisfy all the constraints.

After a number of simulations,
convergence of neural network was disturbed by
variables ya Coexistence of linear and zero-one variables

the
zero-one

we discovered

forces the neural network for solving the LP problem not
to get a good scaling property. Hence inter-jop condition
that avoids the conflict when more than two operations try
to use the same machine may require some change. Inter-jop
conditions are dependent upon inter-operation conditions.
Therefore, only one of two inter-jop conditions works and
the other operates like as a null constraint. New
representation which eliminates the zero-one variables is

as follows:

Inter-jop condition:
Sik - Sjp 2 typ Sik 2 Sjp

Sip - Sik 2 ti Sip > Sik (2.3)

3. LP Neural Network for Solving Jop-Shop Scheduling
A. Anaysis of the LPNN
A pure linear programming problem can be defined as the

attempt to minimize a cost function

— =
r AV
-
where A is an N-dimentional vector of coefficients for N
variables. This minimization is subject to a set of K

linear constraints among variables:

- —>
Dy » V2B j=1....K

—>

where the D; contains N variable coefficients in a
constraint equation and the B;'s are the bounds.

Typical motion equation describing the Hopfield's LP\N
is [11:

duy u -
C = -4 - -X D DV - B (3.1

i dt R : it f( i .i) )
where ui, R and C;, are input voltage, constant input

resistance, and input capacitance, respectively.
The third term on the right side forces the solution
vector to go into the feasible solution space.

153 _ﬁj N B; < 0, f amplifier operates as a penalty
function which moves the solution vector to the direction
of decreasing the distance from the feasibie soiution

area,
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Fig. 2 Penalty Function

(a) Tank and Hopfield's nonlinearity, flZ)
(b) The nonlinearity of Chua and Lin, f(2)
(c) Our proposed nonlinearity, f£7(Z)



Fig. 2 shows three kinds of penalty function. Fig. 2(a)
was corrected to Fig. 2(b) by Chua[2].
down the solution vector so as to enter feasible area, but

f function scales

it can not serve for searching optimum point. In (3.1) it
is the first term on the right side to function as seeking
for optimal solution. We will call the phenomenon A-effect,
affects

However, a fixed quantity, always the

solution vector regardless of the precision of currunt

bias,

state. In other words there is no adaptation to accuracy in
the feasible area, blinded LPNN merely goes down gradually.
This method requires long time to reach a optimal point,
and the solution obtained will not be expected to have good
precise value because of A-effct. Thus we eliminated
A-effect and proposed the function in fig. 3(c) instead of

fig. 3(b).

du; ; .
G- 2% by ADBY - By)

3.2
dt R i ( )

The penalty function of Fig. 2(c) offers new adapatation
performance in the feasible area. For example, consider the
following simple problem.

MinZ"v,
subject to
vli 20
v2 - vl 28
Through the simulation we obtained good result. The

comparision with Chua model in the same circumstances is
shown in Fig. 3(a) and 3(b). Faster and more precise result

than conventional LPNN was acquired.
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Fig. 3. (a) Chua model, (b) Adaptable LPNN
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Fig. 4. LP Neural Network Diagram

B. Application to Jop-Shop Scheduling.

¥e applied the proposed method to jop-shop scheduling, 2
jobs and 3 machines allocation problem, Table 1 shows the
routing of the processes.

Table 1. Jop-Shop scheduling routing.
The value in perenthesis is processing time.

operation
Jop
1 2 3
1 1(5) 2(8) 3(2)
2 A7)y 13 22)

At this time corresponding constraint set is:

vliz20
v2 - vl 2 tl
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v3 - v2 > t2

v 2 0

v - v4 2 t4

vb - vh 2 t5

vl -vb2t5 or vh - vl 21l
vZ - v6 216 or v6 - v2 2 t2
v3 -vd2t4 or v4 - v3 2 t3,

However, the solution vector of this example can't

satisty all the equalities of the constraints. At optimum

some constraints reach their boundray walls, on the other

hand the rest settle down in surplus state, in terms of the

distance from the constraint wall.

Therefore in order to use adaptaional scaling property,
inserted surplus variables that transform inequality

constraints to equality. New dynamic equation is:

we

dui
Tt

U
R

At this time corresponding constraint set is converted to
followings:

-X Dy ADV - By -85 ) (3.3)
J

vl ~s1 =0
vZ ~ vl - 82 =tl
v3 - v2 - 83 = t2
vi ~ 54 =0
v6 ~ v4 - g5 = t4
v6 -~ vh - s6 = t§
vl - v5-87=t5 or v§ -~ vl - 57 =1l
vZ -~ v6-s8=t6 or v6 - v2 - 58 = t2
v3 - v4-59=t4 or v§ - v3 - 59 =13
The change rule as to § is described as (3.3). The
flag W indicating how closely the solution vector reach
the optimum is the margin of surplus. The overall

operation algorithm is (3.3) to (3.5).

s; = Dyv(k-1) - B; (3.3)
Mj = Dy(v(k-1) ~ v(k)) (3.4)
if M; >0, AM)=KM;
else f(M;)=0 (3.5)

Fig. 5 shows the obtained solution vector, optimal
solution,
M1 1,1 2,2
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Fig. 5. Solution represented by Gantt chart,

4. Conclusions

We developed a modifield Hopfield model
linear programming problem for jop-shop scheduling. The

to solve the

proposed algorithm seems to yield better results tnan the
existing ones.
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The more rigorous and mathematical analysis on this

model is necessaary in further research.
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