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Abstract

In this paper, we consider the synthesis of mixed Hz/Ho

controllers such that the closed-loop poles are located in
a specified region in the complex plane. Using solution
to a generalized Riccati equation and a change of vari-
able technique, it is shown that this synthesis problem
can be reduced to a convex optimization problem over a
bounded subset of matrices. This convex programming
can be further reduced to Generalized Eigenvalue Mini-
mization Problem where Interior Point method has been
recently developed to efficiently solve this problem.

1 Introduction

Mixed Hy/H,, control theory offers a way of combining dis-
turbance attenuation system which is guaranteed by H,-norm
of a certain closed-loop transfer function, and quadratic per-
formance which is measured by Hz-norm of another transfer
function[2,3,5,6]). The mixed-norm theory, however, does not di-
rectly deal with the desired dynamic characteristic of the closed-
loop system which is commonly expressed in terms of transient
response. This characteristic is generally described with the
aid of conditions imposed on the spectrum of the closed-loop
system[14-16]. For many practical problems, exact eigenvalue
assignment may not be necessary; it suffices to locate closed-
loop eigenvalues in prescribed subregions in the left half plane,
for example by employing a criterion for root clustering[11-14].

The problem of determining controllers which minimize a
quadratic performance subject to an Ho, constraint such that
the closed-loop eigenvalues are located in a class of regions in the
left half plane, is recently presented by Bambang et al[8]. In that
paper, an equivalent optimization problem is formulated and
necessary condition is derived. This condition involves highly
coupled nonlinear equations which do not have closed-form so-
lutions, and thus iterative algorithm is required to solve such
equations. In the present paper we consider the same problem,
but we take alternative approach based on the convex optimiza-
tion techniques. A generalized Riccati equation is employed in
order to satisfy Ho and pole placement constraint as well as
to obtain an upperbound on the H; cost. Using a solution to
the generalized Riccati equation and a change of variable tech-
nique, we show that mixed Hy/H,, synthesis problem with re-
gional pole constraint can be reduced to the convex opiimization
problem over a bounded subset of symmetric real matrices. For
computational purpose, we will reduce the resulting convex op-
timization problem into a Generalized Eigenvalue Minimization
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Problem where an attractive Interior Point method has been
recently developed to efficiently solve this problem(9].

Now, let us outline the content of the present paper. In Sec-
tion 2, we formulate mixed H;/H,, control with pole placement.
In this section we present some preliminaries which are useful in
deriving some of the results of this paper. In Section 3 we will
show that this synthesis problem can be reduced to a convex
optimization problem over a bounded subset of matrices, via
a solution to generalized Riccati equation and change of vari-
able technique. For computational purpose, we will reduce this
convex programming to Generalized Eigenvalue Minimization
Problem and present Interior Point Method to find its solution.
Finally, in Section 5 we present some concluding remarks.

2 Problem Formulation And Preliminar-
ies
2.1 Problem Formulation

In this subsection, we formulate mixed H,/Ho., control problem
with root clustering. Consider linear time-invariant systems de-
scribed by

#(t) = Az(t) + Bau(t) + Biw(t)
z;(t) = Cll'(t) + D]ﬂ(f) (21)
Zz(t) = C;I(t) + Dzu(i),

where w(t) € R™ is the disturbance, u(t) € R™ is the control;
z(t) € R™ is the state; z(t) € R™u and z,(1) € R™2 are H,,
and H; performance variables, respectively. Assume the pair
[A, B;] is stabilizable.

For the plant given by (2.1), determine state feedback con-
troller described by

u(t) = Kz(t) (2.2)

such that the following design criteria are satisfied,

1. If w(t) is Ly deterministic signal, the closed-loop transfer
function from w(t) to 21(t) satisfies

T2y w(8)lloo < ¥ (2.3)
1T w(8)leo := I(Cy + D1K)(sI — A — B2 K) ™' Byljoo



2. If w(t) is a white noise signal with unit strength, H2 per-
formance criterion defined by

. 1T, ’
Ji= Tlggog{TL [=(t) Raz(t) + o' () Ryu(t)]dt} (2.4)

is minimized, where Ry := C4Cy > 0, R := DyD;y >0,
and £ denotes the expectation;

3. The spectrum of the closed-loop system matrix are located
in a class of regions

a(A+ B;K)C D, (2.5)

where D is a subregion in the open left half plane.

Implicit in the above objectives is the requirement that the
closed-loop system is asymptotically stable. We suppose that D
is a circle region in the open left half plane. This circle region
can be considered as an approximation to the region which is
formed by intersecting a sector region and a straight line par-
allel to imaginary axis. The latter region puts a lower bound
on both exponential decay rate and the damping ratio of the
closed-loop response, and thus is very common in practical con-
trol design{15].

Remark 2.1

We would like to emphasize here that in the above synthesis
problem, we interpret the Ho-norm of a transfer function ma-
trix as the maximal output energy for all inputs in Ly with unit
energy. Thus, He,-norm constraint (2.3) provides a prespecified
level of disturbance attenuation. In this interpretation, our con-
troller will minimize the H, performance while simultaneously
provide a prespecified level of disturbance attenuation and the
containment of closed-loop poles in region D. As is well known
H-norm also provide robust stability for feedback system un-
der the presence of unstructured uncertainty. However, in the
later interpretation our design may not guarantee simultane-
ous robust stability and pole placement, although still provide
a nominal performance in He-norm sense.

The closed-loop system is given by

= AI + Blw
2] = C’lz (2.6)
2y = éz(t,

where
A=A+ B:K, Bi= B
é] =C1+ DK, Cg =Cqy+ D2K.
Suppose that the closed-loop system (2.6) is internally sta-

ble. Then, it is well known that H; performance in (2.4) can be
equivalently expressed as

J = Tspull} = tr [C2C2 P, (2.7)
where P is positive definite solution to Lyapunov equation

AP+ PA'+ BB = 0. (2.8)

2.2 Preliminaries

In this subsection, we collect some results which are useful in
developing convex programming associated with the above syn-
thesis control problem.
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The following well-known lemma characterizes Hoo-norm
bound of a transfer function matrix in terms of a Riccati equa-

tion.

Lemma 2.1 Let transfer function matriz G(s) := C(sI-A)~'B
be given. Then, A is stable matriz and ||G(s)|leo < 7 if, and only
if, there ezists X = X' > 0 satisfying

AX + XA +972XC'CX + BB' <0. (2.9)

As stated above, for pole placement objective we consider
a circle region D that is contained in the open left half plane.
The next lemma characterizes the pole placement constraint in
terms of solution to a generalized Lyapunov equation[11-14}.

Lemma 2.2 Let G(s) := C(sI - A)"1B be given. Suppose that
D is a circle region with center (—q,0) and radius v which is
contained in the open left half plane. Then,

o(A) € D, (2.10)

if, and only if given any Z > 0 there ezists positive definite
Y =Y' > 0 such that

‘}’10AY +‘70]YA’+"/11AYAI+‘)’()0Y+ Z = 0, (211)

where vo0 = (g2 — 2)72, o1 = 710 = g2 and 11 = 2.

The following proposition gives necessary and sufficient condi-
tion for the satisfaction of Hy, constraint (2.3), as well as the
containment of closed-loop poles in the given region (2.5).

Proposition 2.1 Consider the closed-loop system described in
(2.6). Then, the following conditions are equivalent

1. The closed-loop system is stable and satisfies

Tz w(S)eo <7, and o(A+ B:K)C D, (2.12)

where D is a circle region in the left half plane with center
(—¢,0) and radius r.

2. There ezist P = P' > 0, u > O(sufficiently small) and
@ > 0 such that

AP+ PA' + 4 2PCICL P+ e APA' + oy P
+5 B +2£Q=0

Y10

(2.13)

with ay = %‘)—, a = :’%
Proof
Sufficiency
Suppose that there exists P = P’ > 0 satisfying (2.13). Then
considering the fact that [alAPA’ +aP+ ;’%Q] > 0, the exis-
tence of solution P = P’ > 0 to (13) implies that

AP+ PA' +12PCIC,P + BiB, < 0.
By Lemma 2.1, we conclude that A, i.e. the closed-loop system

matrix, is stable and }|T;,4(s)|lc < 7. Now, by the fact that
[y~2PC{C P + B, B}] > 0, we have

AP + PA" + a1 APA + oo P + VLQ <0.
10



Defining @1 > 0 as

B0y i= (AP + PA' + 01 APA + anP + 210
Y10 Ti0
we have

AP + PA' + 01 APA' + opP + -7”—Q +Qy =0.
10
But since £-[Q +@Q1] > 0 then invoking Lemma 2.2 we conclude
that o(A + By K) C D.
Necessity:
Suppose that A is a stable matrix, ||Ts,w ()|l < ¥, and o(A+

B;K) C D. Then, by Lemma 2.1, there exists P, = P{ > 0 such
that

/iP] +P1/il+7—'2P1C-';C‘1P1+I}XBQ <0, (2.14)

and by Lemma 2.2, there exists P, = P; > 0 and R > 0 such
that

APy + PyA' + a1 APy A + g Py + %R =0,
10

or equivalently, there exist P, = P; > 0 and e(sufficiently small)
such that

APy + P A" £ 01 AP A" + oo Py + %R <0 (2.15)
10

Add equation (2.14) to (2.15) and rearrange terms to obtain

A(PL+ Po) + (PL+ P)A + v 3(PL + P)CICL(P + Py)
+a1A(Py + P)A' + ag(Pi + P) + B1B) + =R
—[r A PCLC1 Py + PyCICL Py + PCLCL PY)
+a1APLA' + 02 P) < 0.

Noting that [7_2(P1C.';C'1 P2+P2C.'{C.'1 P|+PQC~';C'1P2)+C!1AP1A'+
azP1] > 0, we have

A(Py 4 P) + (P + P)A' + v 2P, + P)C,Ci(P, + Py)
+(11/i(P1 + Pz)A~’ + C!Q(P] + Pg) + Eléi + =R <0.

Y10
Defining symmetric matrix P = P’ := P, + P, > 0 and real
positive number u := e(sufficiently small) we obtain
AP+ PA' + v 2PCC1P + 0y APA’ + P
+Bl Bi +£R<0.

Yo
Let @; > 0 be defined by
I

—Q2 =

o —[AP + PA' + 4y *PCIC1P + a1 APA' + P
10

Y10
Then we have
AP 4+ PA"+ v 2PCCyP + 0j APA' + an P
+B1B] + £(R+ Q1) = 0.

Defining Q := (R+Q2) > 0, the last equation implies that there
exist P = P’ > 0, u > O(sufficiently small) and Q > 0 such that
equation (2.13) is satisfied. This completes the proof.

a
For convenience in stating some of the results of this paper, let
us define

A +472PCIC\P + i APA' + a, P
+ (2.16)
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Suppose that the condition in Proposition 2.1 is satisfied. Then,
the following conditions can be easily verified[3,6],

(2.17)
(2.18)

where P denotes any real symmetric solution to the generalized
Riccati inequality R(P) < 0, with R defined by (2.16). Fur-
thermore by similar argument as the proof of Theorem 7.3 of
[14], it can be shown that both J and J is finite. Note that
J, which is given in terms of solution to generalized Riccati
equation R(P) = 0, is an upperbound to the quadratic cost J.
Instead of minimizing the quadratic cost it self, we will minimize
this upperbound in our optimization problem defined later.
The following results can be established in the same way as
that of [3, Lemma 2.1], the different being that in the present
paper Riccati equation involved in the definition of the upper
bound involves an additional linear and quadratic terms.

Lemma 2.3 Consider the closed-loop system described in (2.6)
and let T,,, denote the transfer function matriz from w to z =
(21, 22). Suppose that

1Tz w(8)loo <7, and a(A+ ByR)C D.
Then,
J(Tp) = inf{tr(CiCP): P = P' >0 such that
R(M, P) < 0}. (2.19)

Now, let the transfer function of the plant (2.1) be denoted by
P. The transfer function of the overall closed-loop system will

be denoted by
Tz
Tzw = [ Tz;‘:, ] .

We call a controller A admissible if K internally stabilizes the
plant P. Introduce the following sets :
A(P) {K : K is admissible}
Asop(P) {K € AP): ITsu(s)lio <7, and
o(A+ B,K)C D}.

In view of Proposition 2.1 and Lemma 2.3, we consider

il

(2.20)

the following synthesis problem which may be considered as
an extension of "suboptimal Hz/H,, controller synthesis” in-
troduced by Khargonekar and Rotea[3] to the mixed Hy/Ho
control problem with pole palacement in a specified region.

Synthesis Problem: ”Compute the mixed performance
measure

0, (P):= inf{J(Tsw) : K € Aw.p(P)},

and, given any 8 > 8,,, find a controller K € A p(P) such
that J(Tw) < 07

(2.21)

3 Convex Optimization Approach

In this section we will develop a convex optimization approach
for solving the controller synthesis problem introduced above.
Motivated by the result of [3], where it is proved that all mem-
oryless state feedback mixed Hy/H,, controllers cannot be im-
proved upon by the use of dynamic "full information” con-
trollers, we are interested in the computation of constant state



feedback matrices for the minimization of J(P,K). The set of
such controllers will be denoted by

Ao, p,m(P) := {K € Awo,p(P) : K € R™X"}, 3.1)

It will be shown that the optimal performance 8,,(P) defined in
(2.21) is the value of (finite dimensional) convex optimization
problem. Further, given any # > 8,,, one can find K such that
J(P,K) < a by solving a convex programming problem.

Let = denote the set of n, X n, real symmetric matrices, and

define
Q:= {(X,P)e R™*"s x Z: P> 0}. (3.2)

Observe tha:t Q is an open strictly convex subset of R™«X%= x =,
Given (X, P) € 9, define
F(X, P) := tr[(CoP + D2 X)P~(C2 P + D2 X)) (3.3)
and, for (X, P) € R™X*"s x =, let
R(X,P):= AP+ PA'+ B:X + X'By + B1B] + 15Q
+772(C1P + D1 XY(CL P + D1 X)

+0a1(AP + BoX)P~Y (AP + By XY + o P. (3.4)
Define also the set of real matrices:
®(P):= {(X,P)e Q: R(X,P) <0}, (3.5)
and consider the optimization problem
7(P) = inf{f(X, P) : (X, P) € (P)}. (3.6)

Theorem 3.1 Consider the plant P defined in (2.1). Let Tyy
denote its transfer matriz, and A p,m(T2w) denote the set of
controllers defined in (3.1). Let $(P) be given by (3.5). Let 0,
and 7(P) be as defined in (2.20) and (3.6), respectively. Then,

Ao, pm(P) # 8 (3.7
if, and only if,
B(P)#0 (3.8)
with § denote empty set. In this case,
0, (P) = 7(P). (3.9)

Furthermore, given any a > 8,,(P), there ezists (X, P) € ®(P)
such that the state feedback gain K := X P~ satisfies

K € Awpm(P) and J(Tw,K) < f(X,P)<a. (3.10)

Proof

First, we will show that if (P) # 0 then Acpm(P) # 0, and
0,,(P) < 7(P). Suppose that € > 0is given. From the definition
of (P), it follows that there exists a (X, P) € © such that

X, PY<r(P)+e¢, R(X,P)<0,

where f(X,P) and R((X,P) are defined in (3.3) and (3.4),
respectively. We will construct state feedback matrix K €
Aco,p,m(P) such that J(T,,, K) < f(X,P) < a. Define the
real matrix K := XP-1, then closing the loop, we have the
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closed-loop system described in (2.6). Using standard algebraic
manipulation, it can be easily verified that

R(X,P)= AP + PA' + 1 2PC{C1 P + a1 APA’

+azP+ BiB) + £Q = R(P), (3.11)
and that
f(X, P) = tr(CLC2 P). (3.12)

Since P > 0 satisfies R(X,P) < 0, it can be verified from the
properties of Lyapunov equation that A, i.e. closed-loop system
matrix, is asymptotically stable. Furthermore, by Proposition
2.1, we conclude that {|T;, 4(3)||c < 7, and that (A + B2K) C
D. Therefore, K € Aso,p,m(P). In view of Lemma 2.3, we have
J(Tow, K) < tr(C4C2 P). Hence,

0m(P) S J(Tow, K) S S(X, P) S T(P) +e.

Since € is arbitrary positive real number, then 8, (P) < 7(P).

Next we will show that if Ao m(P) # 0, then $(P) # 0, and
8,,(P) = 7(P). Let € be given. From the definition of 6,,(P) in
(2.21), there exists K € A, p.m(P) such that

J(Tow, K) < 0 (P) + €/2.

Using the controller K, the closed-loop system is given by (2.6).

It follows from Lemma 2.3 that there exists P = P > 0 such
that

tr(CiC2P) < J(Tow, K) + €/2 < 0 (P) + ¢,
R(P)= AP+ PA' + y~2PC,C1P + 0} APA' + oy P
+E1B{ + ;%Q <0
Define X := K P. Then,
(X,P)eQ and R(X,P)=R(P)<0.

It follows that (X, P) € ®(P) and from (3.3),
f(X,P) = tr(C4Cy P). Then, we have

f(X,P) < O(P) +e.

Again, since € is arbitrary positive number, we conclude that
0 (P) 2> T.

The last part of this theorem follows immediately from the
definitions and the construction for K.

o)

From Theorem 3.1, it follows that the computation of 7(P)
involves a search over the set ®(P), where X, and P serve as
the decision variables. On the other hand 6,,(P) is computed
by solving nonlinear programming problem with only the real
matrix K as the decision variable. Furthermore, the set of fea-
sible static feedback gains, Ao, p,m(P) does not necessarily con-
vex, and therefore the original optimization problem for mixed
Hy/H,, controller synthesis does not necessarily convex. We
will show that the optimization problem defined in (3.6) is in-
deed a convex problem.

Theorem 3.2 Let f and ® be as defined in (3.3) and (3.5),
respectively, and consider the optimization problem (3.6). Then,
the set ® is conver and the function f : & — R* is convez and
real analytic. Consequently, the optimization problem defined in
(8.6) is convez.



Proof

The fact that f is a real analytic function on the open set

follows immediately from (3.3). The convexity of f can be es-

tablished in the same manner as that of Theorem 4.1 of {3].
The convexity of & is derived by showing that R(X,P) :

RMX% x ¥ — T is a convex mapping( with respect to the cone

of positive semidefinite matrices). Let us rewrite R as

R(X,P) = &,(X, P) + 85(X, P), (3.13)
where
®:,(X,P) := AP+ PA'+B,X+X'By+ BB, + :’%Q
+17C1 P + D1 X)(CL P + D1 X)
®x(X,P) = (AP + ByX)P7'(AP + B2 XY + pP.

The convexity of ®; has been established in [3]. Therefore, to
prove the convexity of @ it remains to show that @, is also
convex in the domain (X, P).

Let us define X := (AP + By X). Then

‘pg(X,P) = QIX.’P_IX+02P.

In view of Proposition E.7.f on p. 459 of[1], the mappings from
(X,P) - 0, X'P~1X and (X, P) — az P are convex. The map
(X,P) - X is obviously convex due to linearity of X in the
variables X and P. Therefore, $;(X, f’) is a convex mapping,
and the convexity of ® follows from the convexity of $; and ®,.
Now, since the set  defined in (3.2) is convex, from the fact
that the level sets of a convex mapping are convex, it follows
that the set ¢ defined in (3.5) is convex. Since the objective
function f(.) is convex on @ D @, we conclude that the opti-

mization problem defined in (3.6) is a convex problem.
m]

Remark 3.1

Under certain condition that is counterpart of that of Lemma
4.6 in 3], we can show that the set $ defined in (3.5) is bounded.
This condition is useful in guaranteeing that a numerical algo-
rithm can be effectively used to solve (3.6).

Let us consider again mixed H,/H, control synthesis with
pole placement for the state feedback plant P. Suppose that
a > 0 is given. From Theorems 3.1 and 3.2, we know that there
exists K € Ao, p,m(P) such that J(T,y, K) < a if only if there
exists (X, P) € ® such that f(X,P) < a. And in this case,
the real matrix K := XP~! is a solution to the sub-optimal
synthesis problem. The problem of finding (X, P) € ® such
that f(X,P) < « is a convex feasibility program which is a
(nonsmooth) convex optimization problem[12].

4 Interior Point Method

In this section, we will show that the optimization problem de-
fined in (3.6) can be reduced to Generalized Eigenvalue Mini-
mization Problem(GEMP) and describe an Interior Point Method
for solving the problem[12]. GEMP is the problem of minimizing
the maximum generalized eigenvalue of a(symmetric, symmet-
ric positive-definite) pair of matrices that depend affinely on a
variable z that is subject to some constraints. In [12], a fast and
attractive algorithm based on Interior Point Method has been

applied to solve efficiently GEMP.
In the general case, GEMP with variables z € R™ and A €
R takes the form

min A 4.1)
AG(z) - F(z)>0
G(z)>0
H(z)>0
or equivalently,
min  Amez(F(2),G(2)). (4.2)
G(z)>0
H(z)>0

where Apmq, denotes the generalized maximum eigenvalue. This
is a function defined on a pair of matrices X, Y by Apnaz(X,Y) :=
maz{) € R|det(\Y ~ X) =0}. In (4.1) and (4.2), F ,G and H
are symmetric matrices that depend affinely on z € R™:

F(z):= R+ YTk, z:F, G(z):=Go+ L%, z:Gi,

H(z):= Ho+ X i2, = H;, (4.3)

where F; = F!,G; = G} € R™",and H; = H! € R***. Matrices
F(z) and G(z) may be complex Hermitian.

Let us turn our attention to the optimization problem de-
fined in (3.6). For convenience, let us express the objective
function (3.3) as:

f(X,P) = tr(CoPC}+ C2X' Dy + D XC

+D,X PT1X'DY). (4.4)

The last term ©(X, P) := DX P=1X'Dj in the above equation
can be equivalently expressed as

O(X, P) = min s Do X tr(S).
[ x'py P ]”

Let us further define

Li(\X,P,8) = —tr(CaPCh+ CoX' Dy + DX C3)
—tr(S)+ A
= Laa Ly
\MX, P, S
LZ( ] ) [ ch de
" s DX
Ls(\, X, P,8) := [X'D; P]
L(\X,P,S) := diag(L1,L2,L3),
where
L = —(AP+PA' +ByX +X'By+ P+ 313;+;’1‘—OQ)
Ly = [ (CiP+DiX) (AP + BoX)]
L = Ll2b
I o0
L = [0 P ]

Note carefully that Ly(), X, P, S), L2(\, X, P,8§) and )

Li(A, X, P, 5) are affine matrix in the variables (X, X, P).
Using the above constructions and employing the Schur com-

plement formula which states that

Zv Za | g 2,50, and Zy - 2325125 > 0,
Zy 7,
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our optimization problem (3.6) can now be represented as

min A

i (4.5)
L(\X,P,5)>0

which indeed is of the form (4.1). Represented in the form
of (4.1), symmetric affine matrices F(z), G(z) and H(z) for
optimization problem (4.5) are given by

F(z) = diag({-tr(C2PCYy + C2X' DYy + Dy XCh) — tr(S))],
Ly, L)

G(z) := diag(1,0,0,0)

H(z) = P.

Vector z in (4.1) then contains the optimization variables which
consist of the independent variables of (), X, P, S).

The GEMP (4.1) can be effectively solved using Interior
Point Method. The method is based on the notion of ana-
lytic center of an affine matrix inequality, say D(z) = Do +
YN =D >o0. Suppose that X denotes the feasible set

X = {z € RV|D(z) > 0}.
The analytic center z* of the inequality D(z) > 0 is defined as
z* = argmingexlog detD(z)~1.

Starting with any feasible 2(%), and a A =
Amaz(A(z(®, B(2(9}), the algorithm proceed as follows
At
PR B

(1= MPAmaz(F(z1), G()) + na®
analytic center of A**)G(z) - F(z) > 0.

i

In the above procedure 7 € (0,1) is a parameter which is typi-
cally small. It enables one to take z(*) as an initial guess for the
Newton type method that finds the analytic center of inequality
Ay 1)G(z) — F(z) > 0. Detailed analysis as well as the proof
of convergence can be found in [9].

5 Conclusion

The problem of synthesizing mixed H,/H., with pole placement
in a specified region in the complex plane has been presented for
finite dimensional linear time-invariant systems. This synthesis
problem is well motivated since in addition to providing a distur-
bance attenuation and nominal (quadratic) performance, it also
guarantees a good transient response. The suboptimal synthe-
sis problem has been reduced to convex optimization problem
over a bounded subset of symmetric matrices via the use of so-
lution to a Riccati equation and a change of variables technique.
Due to convexities established in this paper, we can adopt any
optimization method with global optimality properties. The re-
sulting convex optimization problem can be in turn reduced to
the Generalized Eigenvalue Minimization Problem where a pow-
erful algorithm based on interior point method(analytic center)
has been developed to find its solution[12]. This avoids solving
highly coupled nonlinear equations.
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