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ABSTRACT

Many real-world problems are concerned with
estimation rather than classification. This paper
presents an adaptive technique to estimate the
mechanical properties of materials from acousto-
ultrasonic waveforms. This is done by adapting a
piece-wise linear approximation technique to a

multi-layered neural network architecture.

The piece-wise linear approximation network
(PWLAN) finds a set of connected hyperplanes that
fit all input vectors as close as possible. A cor-
responding architecture requires only one hidden
layer to estimate any curve as an output pattern. A
learning rule for PWLAN is developed and applied
to the acousto-ultrasonic data. The efficiency of
the PWLAN is compared with that of classical back-
propagation network which uses generalized delta
rule as a learning algorithm.

OVERVIEW

PWLAN is used to enhance acousto-ultrasonic
nondestructive evaluation method of the strength
and elastic modulus of composite fiber materials.
The work is performed in the frequency domain
since the envelope of the acousto-ultrasonic
wavetorm has complicated amplitude variations

while the corresponding frequency spectrum ex-
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hibits numerous prominent frequency com-

ponents.

The sample spectra are digital fast Fourier
transforms of waves supplied by a digitizing oscil-
locope. The network using PWLAN utilizes 3 out of
9 acoustoultrasonic waveforms from 3 different
positions repeated 3 times.

INTRODUCTION

The goal of nondestructive evaluation is to
provide a basis for determining whether a structure
will perform reliably or not. The acousto-ultrasonic
method is one of several approaches for the char-
acterization of the properties of materials. Acous-
to-ultrasonics, a relatively new technique, appears
to have promise as a predictor of material strength
and stiffness. Generally, stress wave factor (a
measure of transmitted energy) was observed to
increase with increasing strength and modulus of
polymer matrix composite and ceramic matrix
composite materials [1]. There are a number of
numerical methods to estimate the correlation be-
tween a stress wave factor and the mechanical
properties of a material. The main purpose of this
work is to design a real-time adaptive neural net-
work algorithm for the estimation of mechanical

properties.



Many algorithms and network architectures
have been developed for parallel machines for pat-
tern classification tasks. The problem of finding the
mechanical properties of materials from acousto-
ultrasonic waveforms, however, is a problem of es-

timation rather than classification.

it has been shown [2] that the generalized
delta rule network can learn a continuous function
f(x) given the values of this function at a finite num-
ber of points. Such a network uses sigmoidal func-
tion at each node to threshold the node’s output.
Since the role of each node is to discriminate the
input patterns they will lay on two sides of a divid-
ing hyperplane. The use of analytical sigmoidal
functions allows the network to be used as an es-

timator of class membership functions.

In essence, the PWLAN finds a set of con-
nected hyperplanes which maps an input vector
into an output vector in a feature space. For ex-

ample, a segment of a line in a two dimensionat
space can map an input x to an output y, if the line

is aligned to the data points properly. A connection
of such lines along with the non-linearly distributed
data points can make a good approximation of y for

the given data points.

A corresponding network architecture requires
only one hidden layer to estimate any curve as an
output pattern. A learning rule for PWLANs is
developed and explained in the following section.
The performance of the PWLAN is compared with
that of a backpropagation network on both artificial-

ly generated data and the real data.

METHODS

In this section, we describe the mathematics

and modeling of PWLAN. Lett, be a target value
of input vectors x,, defined ast,, = f(x;;). Let

n
Ol =.Z1 aiixi + aj’n+1,
i=

1
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where 0] represents a hyperplane in an n+1 dimen-
sional vector space and a; is i" coetficient of jth hy-
perplane. Note that any connected hyperplane in an
n+1 dimensional space can be expressed as a
linear combination of hyperplanes which have a
bend on the edge of the connections. Therefore, p
connected hyperplanes can be expressed as fol-

lows:

p
y 2‘21 bilOj] + Bp+1 (2)
j=

where bi is jth coefficient of the linear sum of bent
hyperplanes. For convenience, we will assume that
X,.1=1 and Op+1=1. The equation (2) then be-
comes

p+1 n+1

p+1
Y =i§1 ) \.oj\ =i§1 bj]i§1 ajixi\ ®

Now, the task is to find the a;’s and the b/’s in
an adaptive manner so that y will be a good ap-
proximation of the target value t, given a finite num-
ber of samples(pairs of x and t). A neural network
implementation of the above equation is shown in
Figure 1.

X1

Xa < Xn-1 Xn

Figure 1. Architecture of a neural network.

During the training phase of the network, the
pattern x,, is presented to the network’s input. The
weights are then adjusted so that the desired out-
put t is obtained at the output node. For each pat-

tern, the square of the error between the target



value and the output value is E,, = (t,~ym)>. The
weights are adjusted to reduce the system error E, ..

The system error changes with respect to the

weights as follows:

%’j” = ~2(tm=Ym) [Oj] @

GE, 3
5 = —2(tm_Ym)bj5'a}10jl (5)

—20tm=Ymlbp; it Op>0,
S{ 2tm-ymbpx;  if Op<0, (6)
0 if Op=0.

By taking incremental changes of weights
proportional to the negative direction of the system
error, with properly chosen constant 7, a local mini-
mum of the system error can be achieved. The
resulting learning rule are:

A3 =17 (t = Ym) bjX; Sign(Oy, (7)

Abj = 7(tm=Ym) 10; | 8
where sign() returns -1,1 or 0 depending on

the sign of the argument.

RESULTS

a) Testing PWLAN on generated data sets.

Two single-valued functions of one variable,
y;=3.2x(x-1)+0.1 and y, = 0.8e "% + 0.1, are used
to generate 20 sample points and presented to
PWLAN. The basic task is to have the network learn
the input-output pairs and then generate an es-
timate of the original function by plotting the output
with respect to x.

Thirty hidden nodes are used in the network
and compared with the results of backpropagation
network having the same architecture. Figure 2
shows the estimated functions after 0,4,100 and 400
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iterations on both networks. A comparison of com-

putational speed for both is shown in Figure 3.

b) Estimation of strength and elestic modulus of

materials using PWLAN

Acousto-ultrasonic measurements were per-
formed on bend test specimens using a sensor fix-
ture with two transducers. The sender and receiver
were both 2.25 MHz broad band transducers.
Silicon rubber dry couplant pads were cemented to
the 0.64 cm diameter wear plates of the
transducers. The pads were used to demonstrate
the utility in place of gel type couplants which are
inconvenient. The specimens were clamped be-
tween the transducers and a jack with adjustable
force set at 12 N. The fixture-specimen-jack arran-

gement is shown in figure 4.

Puises arriving at the receiver were displayed
and digitized on the oscilloscope. From there they

were transmitted to the computer for processing.

The signal energy was defined as the square of the
amplified transducer output voltage integrated over
the time of the sweep. This was used as stress
wave factor. Data was taken at 1.9 cm intervals.
The transducer spacing was 3.8 cm thus producing

a 50 percent overlap between adjacent positions.

Eighteen digitized waveforms were collected
from the acousto-ultrasonic stress wave factor
measurement system[3,4,5,6]. Each wavetorm con-
sisted of 512 real values of amplitudes. The
digitized waveforms were transformed into the fre-
quency domain using a fast Fourier transform algo-
rithm. The sample spectra were partitioned into
several, equally spaced, frequency intervals. The
spectral energies were added together within a
given interval to produce a stress wave factor
defined as

f2

I s 2.
f1

SWF = S,

|
F (9



These stress wave factors are the input fea-
tures to PWLAN. In this study, 1, 2, and 257 parti-
tions were tried. The stress wave factors were
normalized using the maximum asymptotic value
found from the samples. The corresponding output
features were mapped linearly onto the interval
[0.1,0.9] so that they match the maximum and mini-

mum values at 0.9 and 0.1, respectively.

This procedure was applied to each sample on
all 9 acousto-ultrasonic waveforms and averaged
with respect to three different positions of the
transducers. As a result of applying this procedure,
a complete set of 18 learning data sets with -, 2-
and 257-dimensional input and scalar output is
produced. The training of PWLAN is straightfor-
ward, and the results for 1-dimensional case are

shown in Figure 5.

DISCUSSION

It for estimation

problems, there is a significant difference in the

has been shown that,

performance of the backpropagation neural net-
work classifier and PWLAN. The mean square error
in PWLAN approaches local minimum much faster

than in the backpropagation network.

In order to implement higher order version of
PWLAN, it will be necessary to extand the input fea-
tures into higher order terms [2]. The advantage of
the algorithm is that even for the higher order
cases,the network would require only one hidden
layer. This allows the use of the same architecture

for any complexity of the input data.

Since a node in the hidden layer can produce
a bend on the output estimation curve, the number
of bends on the estimated hyper curve is less or
equal to the number of nodes in hidden layer.
Therefore, it will be possible to use available priori
knowledge of sample distribution to decide the size

of the hidden layer.
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Figure 3. System error behavior on both networks when they estimate the above functions.
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Figure 4. The fixture-specimen-jack arrangement.
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Figure 5-a. Elestic Modulus vs Stress Wave Factor. Figure 5-b. Strength vs Stress Wave Factor.
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