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ABSTRACT

This paper describes the estimation of the solid friction
in mechanical systems by using the cxtended Kalman filtcring
techniques. We proposcd two stochastic modcl for the estimation.
The one is the 'paramectric model' which represents the friction
characteristics by an exponential function with unknown
parameters. The other is the 'blind model’ which docs not assume
an explicit model but regard the effect of the friction as an
unknown input to a known dynamic system. For both modcls,
wec give estimation algorithms to gencratc the filtered estimate
and the smoothed estimate with a fixed lag. The filtcred estimate
can be generated on-line for compensating the solid friction in
mechanical systems. Although on-line applications arc
impossible, the smoothed estimatc is more accurate and can be
uscd to grasp precise friction characteristics. Simulation and
cxperimental results arc presented to show the effectiveness of

the proposed techniques.
1. INTRODUCTION

Solid friction in mechanical control systems causes
undesirable effects such as a jerking motion. Since, for example,
the occurrence of the jerking motion depends on the negative
gradicnt in the velocity characteristics of the solid friction[1}, it
is important to identify the velocity characteristic of the solid
friction. Bell et al.[2] and Dahl {3} have measured the solid

friction of slideways and that of ball bearing, respectively.

Walrath{4] has discussed effective application of the mcasured
data to compensate the solid friction in mechanical control
systems. However, these methods require several sensors or a
special apparatus for the measurement. To compensate the
effect of the solid friction without special hardwares, Canudas
et al.[5] have proposed to use an observer which estimates the
friction.

In this paper we consider the estimation of the solid
friction by using extended Kalman filtering techniques. We
proposc two stochastic modcls for the estimation. The one is
the parametric model which represents the friction characteristics
by an exponential function with three unknown parameters. The
unknown parameters containcd in the model arc estimated by
an extended Kalman filter together with the state variables.
The other is the blind model which does not assume an explicit
modcl but estimates the friction as an unknown input to a
known dynamic systcm. For both models, we derive estimation
algorithms to generate the filtcred estimate and smoothed estimate
with a fixed-lag. The filtcred estimate can be generated on-line
for compensating the solid friction in mechanical systems. The
smoothed estimate, which can not be generated on-linc, is more
accurate than the filtered cstimate. Although the smoothed
estimated can not dircctly be used for the on-line compensation,
it is extremely uscful to grasp friction charactcristics.

To confirm the cffectiveness of the proposcd algorithms,

we give simulation results for a simple mechanical system.



Then we give experimental results where the proposed techniques
arc applied for estimation of the solid friction acting on the axis
of an experimental pendulum system. Using the change of
pendulum angle, we can estimate the relationship between the

solid friction and the velocity by the proposed techniques.
2. ESTIMATION METHOD OF SOLID FRICTION

2.1 Mcchanicél systems with solid friction

Consider a mechanical system such as Fig.1. Let the
continuous-time state equation of the mechanical system be
1

where x is a state variable vector, ¥ (x) is a vector function

x=¥(x) Bu+Gf+w

representing the system dynamics, # is a system input vector, f
is a solid friction, w is a proccss noise vector. Since the
measurement is performed by a microcomputer system, we
use a discrete-time model of (1) described by

()

3)

where suffix ¢ denote the £ th sampling time, y, is a obscrvation

x, ~¥( ) Bu+Gf +w,

y=Cx v,
vector, v, is a observation noisc vector.

2.2 Friction models

The solid friction is regarded as a function of the velocity.
We mainly consider here the friction model which shows the
negative gradient for the velocity. This model is represented in
Fig.2(a). The characteristics of the solid friction with a hysteresis

loop[2] is shown in Fig.2(b).
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Fig.1 Mechanical system with solid friction
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2.3 Estimation method
Parametric model:

Assume that the friction characteristics can be
approximated by the exponential function

f(% 6)=8 exp(- 6, |v]) +6, ()
where v is the sliding velocity, 8=[8, 6, 6, ] is a paramcter
vector which determines the friction characteristics. Substituting
f{n ,6) forf in eq.(2), we obtain

X, V@) Bu+Gf(v,8) +w, (5)
Assume that the parameter in eq.(4) is thc stochastic process

defined by

0:+1=0:+”’z (6)

Then, we ir}troducc an extended state vector
xt
Z,= 7
an 0]

The cxtended system can be written as

z,, =@z )Du+W, 8)

y=Hz v, ®

H=[C 0]

where
G
) (z,){w') f(z,)} o{’; } Wz{‘ii
0; w,

The state vector z, of the ¢q.(8) can be estimated by extended

Kalman filter or fixcd-lag smoother. Putting the estimated 6,

into the friction modcl eq.(4), we obtain the estimate of the solid

friction.

Blind model:

Let the solid friction f, in €q.(2) be
£, 5w, (10)

where w ‘

is a white noise process. Then, we introduce an

extended state vector

(x,
z,{ ; a1
!
From eq.(3) and cq.(11), €q.(2) can be rewritten as
2., =) Du +W, 12)
y=Hz v, (13)
where
) | W(x)4GF,
(Z,)ﬂ )



B w,
SHLE ;J
H=C 0]
If we can estimate the state variable vectorz, we have an

estimate of the solid friction f,.

2.4 Estimation algorithms

For the nonlinear system eq.(8) or eq.(12), we define

¢l=6¢ =) A (14)
0x |rax tn
Extended Kalman filter algorithm for the generation of

the filtered estimate is given as follows:

(i) initial condition

201720 Po.1=%o (15)

(ii) Kalman gain
T T -1

K=P, H[HP, H +R] (16)
(iif) measurement update

zt/t=zr/t-1+Ktb'r -H zt/t-1] an
(iv) time up date

2= P2 tDy, (18)
(v) covariance of estimation error

T T
Pt+1/f=¢lPt/t¢r +G QG
P,=P, -KHP, (19)

The algorithm for the generation of the smoothcd
estimated with fixed-lag is given as follows:
(i) initial condition

201720 20=0, =01, L

Py, (0,0)=Z, P, (j, D=0

=01, L (+1°=0) (20)
(ii) smoothing gain
K(D=P,, (iO)H [HP, O0H +R]" (1)

(iiif) measurement update
zt~i/l=zt-j/l-l+Kt(j) [yt -H zr/t-I]
j=0)1) o 'yL
(iv) time update

(22)
2= @ yy) DY, @3
(v) covariances of estimation error
T T
P, 00=2P, (0,0)® +GQG
P (i0)= ¢er(j,0)

; . T
P10 N=@,,,30)
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P, (iD=P, (jD-K(DHP, (0,)) (24
Figure 3 illustrates mecasurement data used by Kalman

filter and fixed-lag smoother. Note that the fixed-lag smoother

provides more accurate estimate than Kalman filter by making

full use of measured data.
3. SIMULATION

The simulation study given here considers the mechanical
system consisting of a spring, a damper and a mass showing in
Fig.1. The solid friction acts on the mass of the system. The

equation of motion is
2
dx
m== = -kX -c%é tF
dr d
where X is a position, m is a mass, k is a spring constant, and ¢

(25)

is a damping coefficient, F is a solid friction. The eq.(25) can
be rewritten in state space form as
x,=x,
\x2= -x, - 28, +f
where

(26)

dx
T=pt, x ‘Xx X, = 1, pz!i; Zszliy
1 0 2 dr m m

F u, -1x,>0
f ‘SS'"(xz)m’ u !z.—, sgn(xz)i{ +:2,<0

Now, consider the two parametric models of the friction with

negative gradient for the velocity :

Model A:

f=0.1exp(-6.2}x,)+0.02 €3]
Model B:

f=0.1/(1.0+10}x,)+0.02 (28)

Using the friction model A or B, we solve €q.(26) by the 4th
order Runge-Kutta method. Adding pseudo random numbers to
the solutions, we gencrate 'obscrved data' contaminated by the
obscrvation noise. And the obtained results are added to
obscrvation noisc. Applying the estimation technique described
in the previous scction, we can obtain the estimation of the solid

friction. Here we present simulation results corresponding the
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Fig.3 Kalman filter and fixed-lag smoother



following five conditions.
Case 1 : The extended Kalman filter based on the blind
model (KFBM) for model A.
PO/-l

Q=diag[0.0 10" 1.0]

=diag[10°*10*10°7,

Case 2 : The extended Kalman filter based on the parametric
model A (KFPMA) for model A.

P

.=diag[104 10410 1.010°3,

Q=diag[0.010710°1.0 10°7]
Case 3 : KFPMA for model B.

Poy.g
Q=diag[0.0 10710210 10°7)

=diag[10*10°*102 1.010'%,

Case 4 : The fixed-lag smoother based on the blind model
(FSBM) for model B.
P, =diag[10"* 104103,
Q=diag[0.0 1077 1.0], lag=800
Case 5 : The fixed-lag smoother based on the parametric
method A (FSPMA) for model B.
P, =diag[10"* 10*10?% 1.010°7,
Q=diag[0.0 10710°%10 10°?, lag=100
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Fig.4 Estimated state variables for case 1
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Fig.5 Estimated solid friciton for case 1

The simulation results are shown in Fig.4-10. Figure 4
and 5 show the estimated state variables and solid friction,
respectively, for case 1. Figure 6 shows the velocity characteristics
of the solid friction in the (A) period in Fig.4. Figure 7 is the
results for case 2. The estimated parameters of the friction
model approach to the real values quickly. The result for case 3
is shown in Fig.8. Small estimation error exists due to the
modelling error of the friction characteristics. Figure 9 and 10
show the results for the smoothers corresponding to case 4 and
case 5, respectively. Note that the result for FSBM shown in
Fig.9 is inferior to that for FSPMA although the lag for FSBM
is larger than that for FSPMA. Table 1 summarizes the mean
square of the estimation errors.

For on-line applications , KFPMA provides better
performance than KFBM. However, the computation time
required for KFPMA is over ten time as long as KFBM. In
addition, the performance of KFPMA deteriorates if the friction
characteristic can not be approximated by the assumed model.
For economical on-line applications, DMKF is more appropriate

for cconomical on-line applications.
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Although FSBM and FSPM cannot be uscd for on-linc

friction characteristic which is difficult to be modcled by simple

function such as reported by Dahl[3].

estimation, these methods provide better estimation performance

than KFBM or KFPMA.. Especially, SFBM can estimate any 4. EXPERIMENTAL RESULTS
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Fig.10 Estimated velocity characteristics
of solid friction for casc 5

Tablel Estimation error of simulation

T g4

>
Pendulum g PTEE Sheet

Strain Gauge

. . . mean square of
simulation condition .
cstimation error

case 1 5.8x 103
case 2 52x10°8
casc 3 32 x10°¢
case 4 8.0 x 106
case 5 83x107
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Fig.12 Bearing part of apparatus
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f)él=x2 (+:x2<0)
| £y=-mgl T sine,- ¢ Mx = f v | 51%2>0

(29
where x, is the pendulum angle, x, is the angular velocity, m is
the mass of the pendulum, g is the gravity acceleration, / is the
length from the center of rotation to the center of gravity, c is a
coefficicnt of a damping, f is a solid friction, J is the inertia of
the pendulum, @ is a process noise. The observation equation is

y=[1 0 +v (30)
Table 2 represents the parameter of the pecndulum. The bearing
part of the experimental apparatus is shown in Fig.12. The
friction device is attached to the axis. The solid friction is almost
produced by this device. The material of the axis is mild stecl.
The friction pads are made by industrial pure aluminum. The
surfaces of the friction pads are lubricated by turbine oil. The
normal load is measured by the strain gauge and adjusted by
the screws of the upper part of the apparatus. The angle of the

pendulum is measured by the microcomputer system which has

12bit A/D converter to detect the voltage of the potentiometer.
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Fig.13 Measured data, pendulum angle vs time
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Fig.14 Estimation result for cxperimental data
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The sampling period is 5.0x10 * sec.

We present here an example of the estimation result by
usc of FSBM. The conditions of FSBM are

P, =[0.010.010.01}, @=[010°1],

r=10", lag=200
The measured data of the pendulum angle are shown in Fig.13.
The estimated friction characteristics is shown in Fig.14. Note
that the hysteresis characteristic of the friction is captured

successfully by the proposed technique.
5. CONCLUSION

Using the extended Kalman filtering techniques, we have
discussed methods for estimating the solid friction in mechanical
systems. The effectiveness of the proposed methods is illustrated
by the experimental result as well as the simulation results.

We recommend two step use of the proposed algorithms.
First, the algorithms based on the blind model is applicd to
obtain a rough model of the friction. Then, the result is used to
construct a parametric model possibly with unknown parameters.
The improved estimation algorithm can be constructed based on
the parametric model.

Applications of the proposed techniques to various

practical problems are promising and will be discussed elsewhere.
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