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ABSTRACT

Modern manufacturing process requires machine
intelligence to meet the demands for high technology
products as well as intelligence-based operating skills
to lessen human worker's intervene. To meet this trend
there has been wide spread interest in applying artificial
neural network(ANN) to the areas of manufactutihg
process monitoring and control. This paper addresses
application problems in such processes as welding,
assembly, hydroforming process and inspection of
solder joints.

1. Introduction

Manufacturing processes are becoming extremely
sophisticated to meet the demands for high technology
products. The sophisticated process characteristics
demand sophisticated operating skills. Most of
manufacturing processes suffer from the drawback that
their operating parameters are usually preset with no
provision for on-line adjustments. The on-line
adjustments are ultimately needed to assure that
production and quality levels are satisfactorily
maintained, when processes suffer from variation of
material properties, variation of machine conditions and
changes in processing environments.

One solution is to utilize modern contro! technigues
for on-line adjusting operating parameters based upon
measurement of those parameters. This appears to be
a typical feedback control method which regulates
instantaneous values of the operating parameters to the
preset ones. Current manufacturing process control
technique developed up to now adopt this solution.
Examples which employ such control techniques are

current or voltage control in welding processes, punch
stroke control in metal forming processes and forging
processes, ram speed control in injection molding
processes, voltage control for laser power variation in
laser heat treatment processes, tool position or feedrate
control in machining processes and roll position control
in rolling processes. The critical operating parameters
and product quality of each process are summarized in
Table 1. This control strategy has drawback that,
although the operating parameters are well controlled,
good product quality cannot be guaranteed. This is due
to the fact that the processes are often subject to
variations of processing environments, while operated
with those controlled operating parameters. This
indicates that the process control requires the
knowledge of instantaneous process operating states to
cope with the changing environments.

Table 1. Operating Parameters and Product Quality in
Various Manufacturing Processes.
Process Operating Parameters Product Quality
/Defect
Welding welding current/voltage weld pool size
wire feedrate void
torch speed
gas content
Metal punch stroke product geometrical
forming punch speed dimension
surface wrinkling
fracture, necking
Hydroforming | hydraulic forming product geometrical
pressure dimension
punch stroke surface wrinkling
rupture, necking
Metal feedrate machining dimension
cutting cutting speed surface roughness
Ring pressure roll feedrate ring dimension
rolling conical roll feedrate surface quality
Laser heat laser power surface hardening
treatment torch speed depth
Injection ram speed vs, molecular orientation
molding stroke, temperature short size
product geometry




The solution to overcome this problem is to control
the operating parameters based upon direct
measurement of product quality. This is extremely
difficult because it requires specific knowledge of
process dynamics as well as on-line quality
measurement.

In recent years there has been wide spread interest
In applying artificial neural'networks (ANN) to such
problem areas as machine diagnosis inspection of
solder points on electronic circuit boards, machine
vision system, robot control and so on. The neural
networks mimics the computational architecture of
human brain to achieve the intelligent capabilities such
as learning and pattern recognition. The characteristics
possessed by ANN appear to provide powerful
solutions to inherent problems with which most of
manufacturing processes seriously face, as discussed
earlier. This paper addresses application problems in
manufacturing processes such as welding process,
assembly process, hydroforming process, and
inspection of solder joints. The research works
addressed here is confined to those conducted in
Laboratory for Control Systems and Automation in
KAIST.

2. Arc Welding Process

In GMA welding processes, the electric arc is
generated by the flow ot an electric current and
maintained between the consumable wire electrode and
the weldment, as shown in Fig.1. The consumable
electrode is automatically fed by a wire feeding device
and provides additional filler metal. To prohibit oxidation
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Fig.1 Schematic description of GMA welding process.
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of the weld metal resulted from its exposure to the
atmosphere at high temperatures, shielding gases are
provided. The geometry of the resulting weld bead can
be represented by the top bead width, the depth of
penetration and the back bead width as shown in Fig.2.
In a partial penetration welding, the size of the
penetration depth is an important parameter to assess
the integrity of the weld quality. While, in a full
penetration welding the size of the back bead width is a
significant factor. Because a good quality weld is
characterized by the relatively high depth to width ratio
of the weld bead, the integrity of the weld quality can be
assessed by monitoring the penetration depth or the
back bead width. To monitor and control weld
geometry, the surface temperatures that are strongly
related with the formation of the weld pool are utilized.

Top beod width

Penetration depth
Weldment

(a) Partial penetration

Top bead width

-’l L— Back bead width

(b) Full penetration

Fig.2 Cross sectional view of a weld pool.

Experimental m

Fig.3 shows the experimental apparatus used for
quality monitoring and control. Temperatures on the top
surface of the weldment are measured by noncontact
infrared temperature sensing system. This temperature
sensing system[1] is made of an objective lens, three
apertures, three PbSe detectors and a signal
processing circuit.

2.1 Weld Pool Size Estimation

Fig.4 shows the training and estimation procedures
for the weld pool sizes from the surface temperatures
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Fig.3 Schematic diagram of the experimental
apparatus.
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Fig.4 Schematic diagram of the training and estimation
procedures for weld pool sizes using a neural
network.

by using neural networks. Before the actual estimation
is conducted using a neural network estimator, training
is performed to determine the parameters necessary to
construct the appropriate neural network estimator. The
training data are obtained from the experiments
conducted for various welding conditions. They include
the point temperatures measured at the top surface of
the weldment and the resulting weld pool sizes. The
temperature information such as T,, T,-T, and T,-T;
and the corresponding weld pool size indicators, such
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as the top bead width and the penetration plus half
back width are taken as the input and output
parameters of the neural network estimator,
respectively, as shown in Fig.4. In the beginning of the
training, the estimated weld pool sizes may be largely
different from the experimental because
construction of the appropriate neural network estimator
is not completed. To reduce these differences the set of
the network parameters are corrected according to the
error back propagation algorithm. The weld pool sizes
are recalculated based upon the recorrected network
parameters and compared again with the experimental
ones. This iterative training is performed for the entire
training data set until the estimation errors fall within the

ones,

tolerant values.

After the neural network estimator is completely
trained, the actual estimation is performed using the
newly measured temperature data which must not be
included in the training data set.

2.2 Estimation Results and Discussions

Fig.5 shows the estimation results of the data set
for the welding speed of 4 mm/sec when the neural
network architectures are 3-4-2-1 nodes for the top
bead width and 3-4-6-1 nodes for the penetration plus
half back width. In Fig.5(a), the estimated weld pool
sizes and the experimentally obtained ones are
depicted in solid and hollow square boxes, respectively.
As shown in this figure, the estimated weld pool sizes
match very well up with the experimentally ones. The
estimation errors range from -0.24 to 0.24 mm for the
top bead width and from -0.24 to 0.41 mm for the
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Fig.5 Estimation result of the weld poot sizes using a
neural estimator: welding speed = 4 mm/sec.



penetration depth plus half back width. These results
reveal that the relationship between the temperature
information and the resulting weld pool sizes were
successfully implemented in the neural network
estimator, although the relationships are very complex
and nonlinear. In Fig.5(b), the percentage estimation
errors are presented. From this figure, it is shown that
the estimation errors are within 5% for the top bead
width, while 10% for the penetration depth plus half
back width. The estimation errors for the penetration
depth plus half back width are slightly larger than those
for the top bead width. This is because the penetration
depth plus half back width varies more nonlinearly with
the welding conditions, thus deteriorating the
characterization of the temperature - weld pool size
relationship.

3. Assembly Process

Present assembly task requires an extremely high
position accuracy and good knowledge of mating parts.
However, actual assembly task suffers from the
nonlinearities and uncertainties such as: 1)the nonlinear
relationship between the corrective motion and sensor
signals, 2)an imperfect knowledge due to the
mechanical constraints of mating parts and their
environments, 3)limitations of the devices performing
the assembly, and 4) friction conditions. These
nonlinearities and uncertainties results in several
problems: 1)an exact model for recognizing the
misalignment can not be constructed, 2)the relationship
between sensor signals and misalignment is vague and
inexact. To overcome above problems, a fuzzy set
theory can be applied to assembly task[2]. However, in
the fuzzy rule-based approach, the performance of
assembly task depends heavily upon the fuzzy
inference and rule base that can be constructed in
various ways. Moreover, it is often difficult to gather
effective rules sufficient to acquire good assembly
performance because assembly strategy usually differs
from geometrical conditions of the mating parts and
their positions accuracy.

To cope with the difficulty associated the
construction of rule base, we utilize two neuron-like
elements to develop a self-learning rule-based
assembly scheme whose rule base is improved
iteratively until the assembly process is effectively
performed.
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Fig.6 Schematic diagram of the experimental set-up.
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Fig.7 Block diagram of the proposed self-learning
rule- based assembly algorithm.

3.1 Assembly System Configuration

The presented algorithm is described for the
assembly system as shown in Fig.6. Namely, the
assembly system consists of a 6-axis force
sensor(Barry Wright), a x-y fine motion table, a SCARA
robot, a RCC wrist with z-axis compliance(Barry
Wright), and IBM/AT computer. With this assembly
system, the block diagram of the presented assembly
scheme, as shown in Fig.7, consists of two hierarchical
levels. The lower one is a rule-based fuzzy controller
which is composed of four modules: fuzzy decoder, rule
base, fuzzy reasoning, and defuzzification. The higher
one is the rule learning mechanism which is based
upon two neuron-like elements[3], and learns control



rules iteratively until the assembly task can be
successfully performed so that no further changers in
rule base are necessary.

3.2 Rule Learning Mechanism

The force sensor-based rule consists of rules
which connect the force elemems(ﬁ and@) and
moment elements (f:ﬂx and rﬁy) to corrective
motion(Ux and Uy} that has to be applied to the
manipulator. The tild sign(~) represents fuzzy variable.
The rule base takes the form:

IF % isFY, §is B, m, is MY, my is My

THEN i is U and 0y is Uy

where k denotes the kth rule in the rule base. For the
fuzzy rule, the objective of learning mechanism is to
learn the linguistic fuzzy subsets, U:‘, which is
accomplished by two neuron-like elements: the
associative critic neuron(ACN) and the associative
learning neuron(ALN). The learning procedures, as
shown in Fig.8, is as follows; at first, if force signals are

measured, the fuzzy decoder investigates the current

Dstuzzification
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Fig.8 Signal flow of the proposed assembly scheme.
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contact state of the mating parts, and generates
outputs which are the activities of the fuzzy rules
corresponding to input signals. The activity of each rule
is summed, and sent to ACN and ALN. Then, in ACN,
using the weighted sum of activities, p(t). and external
evaluation signal, r(t), which evaluates whether rule
learning is good (r(t)= 0) or bad (r{t) = -1); an internal
evaluation signal, r(t). is generated and is served as an
input of the ALN. The signal () updates the memory
of each rule by using corrective motion and associative
trace relating to each rule. Finally, the value, u K(t), of
tuzzy variable of control action part for fuzzy rule is
generated by following equation:

i=xy k=123..n

where H is a bipolar continuous sigmoid function which
takes the range from -1 to 1, wik(t) represents the i-axis

memory of kth rule, eik(t) is the associative trace of the
i-axis memory of kth rule, & (t) is a positive learning
parameter, and o and

o (t).

K are initial constant values of

3.3 Experimental Results and Discussions

Fig.9 shows the learning performance of the

Required step number

Trial number

Fig.9 The effect for various values of learning
parameter, o
Pp=08, y=08, 8=09, A =07, x=2500)



proposed assembly method. As shown in the figure, the
learning performance depends upon the values of initial
value, o. In this experiment, other learning parameters
were fixed as follows; f=0.8, y=08, §=09, A=07,
K = 2500. As can be seen from the figure, the larger the
value is, the higher the convergency rate is. However,
the o value must be Iimited‘ because the response for
the value larger than o = 280 is shown to be unstable
by this learning. On the other hand, other parameters
little etfect on learning
performance, and, thus, the results are not displayed
here.

were found to have a

4. Hydroforming Process

The hydroforming operation is performed between
the high pressure chamber controlied by a pressure
control valve and the punch moving at a constant
speed as shown in Fig 10. Since the pressure in the
forming chamber is critical to the quality of the forming
product, it is important to design an optimal curve for
forming pressure vs. punch stroke. This curve is usually
determined with consideration on the material
properties, material thickness and geometrical shape of
parts to be formed[4]. Currently, this operating curve is
obtained by trial and error methods, thus demanding
tremendous efforts and high cost.

The use of the neural network here is to replace
the conventional trial method and
automatically generates appropriate operating curves
whenever any changes in part material properties and
forming geometries necessitate new operating pressure
curves.

and error

Diaphragm
Control Valve \

(\/ l Tt
Pressure ' Chamber

w Punch \\N
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Workpiece 1 Blank Holder
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Fig.10 Schematic diagram for hydroforming process.
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4.1 Neural Network-Based Pressure Curve Design

The variation of the chamber pressure with punch
stroke determines instantaneous forming shape of a
sheet metal part. The instantaneous forming shape is
characterized by the geometric parameters such as
blank area( Ay), flange area(Ay), contact angle between
die and blank and projected area of the punch(A;).
These parameters are defined in Fig.11. As the punch
goes upwards through the chamber, the pressure
variation in the chamber alters the instantaneous shape
of the part and, therefore, these geometric parameters
change with punch stroke.

The problem is then how we can determine the
pressure vs. punch stroke curve to obtain a formed part
of high and uniform quality. To achieve this, a multi-
layer perceptron is utilized to generate such curve for
various punch shapes and sizes and drawing ratios.
This implies that the network maps the nonlinear
relationship between the geometric parameters and the
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Fig.11 Geometric state variables for hydroforming
process.

forming pressure throughout the punch stroke. The
input variables(s) to the network are geometric
parameters, while the network output(p) is the forming
pressure value. Collecting all of the output pressure
values yield the desired pressure curve during forming.
As shown in Fig.12, the network has one input layer
consisting of 5 nodes, two hidden layers consisting of
20 and 15 nodes each and one output layer. To train
the network the error back propagation method is used.
In this algorithm, the error, E , is defined by

E=3(p, —pllpi-pe)

where p;( denotes the desired pressure value for the
k-th training sample and Pk is the corresponding



estimated pressure of the network.

Various punch shape, sizes and drawing ratios
were used to train the network. For a given parameter
condition a series of forming experiment were
conducted to obtain the desired pressure vs. stroke.
The desired pressure values p were so determined that
thickness variation of the formed part is within 10% of
the original part thickness. This choice is made
because large thickness variation is detrimental to
product quality.

Hidden
Layer

Input
Layer

Output
Layer

Fig.12 Multi-layered feedforward neural network.
4.2 Results and Discussions

Fig. 13 illustrates a typical pressure curve along
the punch stroke. The solid line indicates the
experimentally obtained curve, while the dotted line
denotes that estimated by the neural network. As can
be seen from the figure two curves are almost identical.
This result indicates that the network exactly predicts
the pressure curve for the given punch diameter and
drawing ratio.

The performance of the trained network was tested
using samples which have not been used for training.
Fig. 14 shows the estimation error vs. number of
sample. The result shows that maximum estimation
error is within £10 bar. This is only less than 3% of the
maximum value of the forming pressure which is shown
to be approximately 350 bar as can be seen from
Fig.13. The estimation error is distributed, but large
number of samples show error occurrence at near zero
bar. The conclusion obtained from these results is that
the proposed network well estimates the forming
pressure thus exhibiting its ability of designing an
operating curve the pressure vs. punch stroke.

5. Inspection of Solder Joints

In printed circuit board assembly, quality inspection
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is one of the most important process, because quality
control is crucial to ensure functional reliability in the
end product,. Quality inspection includes detection and
classification of defects including no solder, insufficient
or excess solder, power welting of component leads or
solder pad. The inspection of such defects, however,
requires not only the tedious joint by joint detection but
also these skillful accurate test. Therefore, manual
inspection used to date is gradually being replaced by
the automated machine inspection which adopts image
processing technology[5][6].

In this section, we describe a neural network based
pattern classifier which identifiers each defect class.

5.1 Inspection System Configuration

Fig.15 shows the experimental test stand for
inspection PCB solder joints. This system consists of
solid state CCD color camera, illumination sources, a
color image digitizer and IBM PC with a display
monitor. The camera system has a 1:7 zoem lens
giving a minimum field of view of approximately
3mm(H)x2mm(V) and a maximum field of view of
approximately 21mm(H)xt4mm(V). The illumination
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Fig.15 The schematic diagram of overail illumination
and vision system.

sources are composed of three circular neon lamps
mounted coaxially; high angle green light is positioned
at the top, middle angle blue light is positioned next to
the green , and low angle red light is placed above the
PCB. The lighting arrangement enables us to correlate
the solder joint profile and color planes. Depending
upon the profile of the joint fillet, different color planes
are obtained according to the incident angles of the
color rays. The color images board digitizes images
into 512(H)x512(V) pixels with 256 possible colors per
pixel and stores it at a video frame rate of 1/30
seconds.

The monitor displays images directly from the
camera or stored images from the digitizer board in
which the IBM PC processes images to recognize each
image pattern. In this study artificial neural network is
used for pattern classifier. Once the image processings
are completed, the recognition results are then,
displayed in the monitor. The monitor indicates that the
solder joints are good or bad; Among the bad no
solder, insufficient joint, bridge of
components leads, separation of the leads from the
board, and etc.

or excess

5.2 Neural Piecewise Linear Classifier

In general, classifiers use the features extracted
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from the real image data as inputs. However, It is time
-consuming to extract features from image and difficult
to determine which feature has a good separating
ability. This directed us to use the raw image data as
inputs to a classifier. When the raw images are used as
the input to a classifier, its input dimension becomes
very high. In this study, in order to overcome the above
problem, a neural piecewise linear classifier[7] with

parallel processing capability is used. This classifier is
shown in Fig.16 which directly uses the raw solder
joints images in order to classify the shape of solder
joints.

Fig.16 The structure of the neural network classifier.

inputs to the neurons consisting of the output layer
are determined by the input vector composed of the
raw image data and the synaptic weights which
correspond to the prototype vectors. The outputs of the
neural network are expressed by the correlation of the
input vector and the prototype vectors. The output of
each neuron is positive-feedbacked to itself and
negative-feedbacked to the other neurons. Then only
one neuron with the maximum value converges to high
positive value and the others converge to zero. In other
words, the only one neuron of the nearest prototype
vector to the current input vector which is called
"winner" is selected and input image is classitied into
the class of the winner. Therefore, the position of the
prototype vectors representing the classes determine
the decision surfaces which separate the vectors into
ciasses. Now, we are interested in how the prototype
vectors are located in optimal positions in which the
classification error is minimized.

The process of learning to locate the prototype in
optimal positions are composed of two stages. In the
first stage, the competitive learning vector quantization



(LVQ1) is used to find approximate positions of the
prototype vectors for each class which is given by

m"(t,.,) = M"(t) + oty Ox(t)-m ()

where m* is the prototype vector which has the
minimum x(t)'m,(t,) value among the prototype vectors
in ith class. This learning algorithm makes the prototype
vectors located in the local means of the class
distribution, but does not minimize the classification
error because the variance of each class may differ.

In the second stage, LVQ2 is used to fine tune the
position of the approximate prototype vectors learned in
the first stage. The adaptation of the position of a
prototype vector is carried out only if a misclassification
occurs as follows;

m*(t,,)=m"(t) - at) (x(t)-m*(t)) only if 1]
where m* is the prototype vector which has the

minimum x,(tk)Tm,(tk) value among all the prototype
vectors. x(t,) belongs to jth class.

5.3 Results and Discussions

We implemented the neural classifier in C program
in a 386 PC and a image processing board.
Implementation in a parallel processing unit will be
further realized. Fig.17 and Fig.18 show the solder
joints images of 6 classes which are used in learning
process. The numbers at the left corners represent the
classes to which the input images within the boxes
belong. First, we selected a prototype image
representing each of 6 classes among 7 training
images and then learned the prototype with 7 training
images according to the competitive learning vector
guantization algorithm(LVQ1). After this stage each
prototype images converges to the mean of the training
images of each classes. Second, the 6 prototype
images was learned with 7x6 training images according
to LVQ2, that is, only if the input image is selected
randomly from 7x6 training images and the class of the
nearest prototype to the input image is different from
the class of the input image, the winner prototype
position is updated backward from the input image

Traning Images

Fig.18 Training images of class 4 to 6.
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Protype Images

Fig.20 Testing images and results of classification by

the neural network.

position. Fig.19 shows the prototype images
representing each class after this two state of learning.
The prototype image intensity values correspond to the
synaptic weight vectors of neurons representing the
classes shown in Fig.16.

The testing images shown Fig.20 were classified by
the neura! network classifier. The number in a left
corner is the class of which the prototype image is the
nearest to that input image. Although the input images
in the third row is corrupted with noise, the neural
classifier assigned the classes which we expected.

In this experiment, we used only one prototype
image in each class. But if more prototype images in a
class are used, more accurate decision surfaces can
be obtained. From this experiment we can find that the
classifier which has the raw image intensities as inputs
directly has merit that it is not necessary to extract
features. But it cannot be denied that the input
dimension is so high that the computation burden is
very heavy. To solve the problem we will further
implement the algorithm using a parallel processing
unit. It must be also noted that this algorithm is
sensitive to position, rotation, distortion variances so
that it is not appropriate to the case such as the
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recognition of handwritten characters in which pattern
variance is very high. But this neural classifier has
some insensitiveness inherently to those variances to
some degree.

6. Conclusion

In this paper, several application problems based
upon neural networks have been addressed for
manufacturing process monitoring and control. These
include on-line estimation of weld pool size in arc
welding processes, self-learning adaptation of
assembly rule base in assembly processes, automatic
generation of operating curves for producing sheet
metal products in hydroforming processes and image
pattern recognition in PCB inspection processes. The
application resuits show that the proposed neural
network approaches can be effectively utilized for
estimation, control and pattern recognition needed for
product quality improvement in other manufacturing
processes.
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