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I Introduction

In the modelling and design of a large number of con-
current systems, live and safe free choice nets (LSFC nets)
have been explored in their structural characteristics
[31{41(6)[7]. On the other hand, state machine decomposable
nets (SMD nets) are a class of Petri nets which can be decom-
posed by a set of strongly connected state machines (S-decom-
position). State machine allocatable nets (SMA nets) are a
subclass of SMD nets, for which the well-behavedness such as
liveness and safeness of state machine components is pre-
served in the composed net. Of particular interest is the rela-
tion between LSFC nets and SMA nets such that a free choice
net has a live and safe marking if and only if the net is an
SMA net. That is, the structure of an LSFC net is an SMA net
[1]. Recently, the complete characterization of SMA net struc-
ture has been obtained by the authors based on an S-decompo-
sition {6](7). In Ref. [6], a necessary and sufficient condition
for a net to be an SMA net is obtained in terms of the net
structure where synchronization between strongly connected
state machine components (S-components) has been clari-
fied. Unfortunately, it requires tremendous amount of time
and spaces to decide a given net to be an SMA net or not by ap-
plying those conditions directly. Moreover, there exist no ef-
ficient algorithm to decide the liveness of a given SMA net
that lessens the usefulness of the decomposition techniques.

The aim of this paper is to propose an efficient poly-
nomial order algorithm to decide whether a given net is a live
SMA net or not. The problem can be divided into two sub-prob-
lems ; (1) to decide a given net is an SMA net or not, (2) to de-
cide a given SMA net is live or not. In Section 3, we present a
polynomial order algorithm for problem (1). And in Section 4,
efficient algorithms for problem (2) is presented. The algo-
rithms proposed here are based on the net decomposition tech-
niques adopted in Ref. [13]. In the next section, basic termi-
nologies and definitions are given. Section § is the conclu-
sion.

2. Basic terminologies and definitions
We assume that the readers are familiar with Petri
net theory. Formal definitions of Petri nets, firing rule, state

machine, marked graph, and free choice net are omitted here
and is found in Ref. [6].

Definition 1. Let (N,Mg)=(P,T;F,Mq) be a marked net and
N1=(P1,T;F}) be a subnet of N.

(a) Ny is called a T-component of (N,Mp) if N1 is a strongly
connected marked graph and Ty-closed, i.e., P1=*TqUT; °,
F1= Fn((P1xTy v (T1xPy ).

(b) Ny is called an S-component of (N,Mp) if N1 is an SCSM
(strongly connected state machine) and Py-closed, i.e.,
T1=.P1UP1., Fy1=Fn ((P1xT1)(Ty xPy ».

Definition 2. A net N=(P,T;F) is an SMD net (state machine
decomposable net) if there exists a set of S-components
N;j=(P;,Ti;F}) such that P=UP;j, T=UTj, F=UF;. In this case
we say N is covered by S-components. A minimal set of S-
components (T-components) which covers N is called an S-
decomposition (T-decomposition) of N. A transition which be-
longs to at least two S-components in an S-decomposition is
called a common transition.

Definition 8. Let Sp is a set of S-components of a net
N=(P,T;F). For any place pe P, the number of S-components
in Sp containing p is the weight of p.

Definition 4. An SM-allocation over a Petri net N=(P,T;F) is
a mapping B{T—P such that VteT, B(t)e *t.
For a given SM-allocation B, the reduction of a Petri net can
be defined by the following procedures. And the resulting net
is called an SM-reduced net.
Algorithm 1. Find an SM-reduced net
Delete all unallocated places.
Repeat(

Delete every transition, whose output places are all

deleted.

Delete every place, at least one of whose output transitions

is deleted.

Delete all ares incident with deleted nodes.
) until no more deletions applicable.
Computational complexity of algorithm 1 is O(m2n), where m
and n represent the number of transitions and the number of
places in N, i.e., |T1=m, IPl=n, respectively.
N=(P,T;F) is called an SMA net (state machine allocatable
net) if every SM-reduced net of N is a non-empty set of
SCSMs.
Definition 5. Let N1 =(P1,T1;F1) be a subnet of N=(P,T;F). An
elementary directed path =, =x]1-'-Xp, X{€ PUT, is a
handle of N1 iff trnN1=(x1, xn) (possibly x1=xn). If both x1
and xp are places (transitions), & is called a pp-handle (tt-
handle). If x1 is a place (transition) and xp is a transition
(place),  is called a pt-handle (tp-handle).
Definition 6. For two elementary directed paths 11 and I2,
11:p1—-Pn, 12:p1-pn (possibly p1=pn), in an S-component Sj,
if 11~12=(p1,pn) and there exists 13, 13:pn—pi, such that
13n(11Ul2) =(p1,pn}, then 11 and 12 are called parallel paths in
S; with respect to the initial place p1 and the terminal place
Pn, and 13 is called & return path of parallel paths 11 and 12,
Let )i be a subpath of lj, i=1, 2, 3. If there exists a pp-handle &
of 11', 11 '#11, such that (xn(12u13)-(p1,pn}=6, then =Ll and
12 are in parallel. That is, ljun is seen as a member of paral-
lel paths with respect to p1 and pn. Similarly, if there exists a
pp-handle = of 13', 13'#13, such that (r(11V12))-{p1,Pn) =0,
then nulg is also a return path. Any transitions ti and tj on
parallel paths 11 and 12, respectively, are called parallel
transitions in Sj with respect to p1 and pn.
Definition 7. A deadlock is a non-empty subset of places DcCP
such that *DCDe. A deadlock D, any proper subset of which is
not a deadlock, is called a minimal deadlock.

3. A polynomial order algorithm to decide SMA nets
In this section we consider a polynomial order algo-
rithm to decide whether a given net is an SMA net or not based
on the SM-decomposability of SMA nets. First of all, we show
the decomposition property of SMA nets which plays an impor-
tant role to construct the algorithm. The property can be di-
rectly derived from the decomposability of LSFC nets qnd the
relationship between an LSFC net and an SMA net given in
{1l )
Lemma 1. Let N=(P,T;F) be an SMA net, and x be an arbi-
trary element of PUT.
(1) There exists a T-component N1=(P1,T1;F1) of N such that
xe P1uUTy.
(2) There exists an S-component Ng=(Pg,Tg ;F2) of N such
that xe PoUT2. ¢ -
Lemma 1 implies the existence of a T-decomposition
and an S-decomposition of an SMA net. And the structure of
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SMA (LSFC) nets was completely characterized by the authors
based on an S-decompesition [7], To simplify our discussion,
we define a new terminology.
Definition 8. Let Si=(P;,Tj;F;) be an S-component of a net N.
For any set L of parallel paths and any return path Iy of L in
Si, a tt-handle m:ti—tj of Sj such that tie ljLlr, tiel;, 0, jiCL,
is called a bad handle of Sj.
Theorem 1. (7] Let N=(P,T;F) be an SMD net. N is an SMA net
if and only if there exists an S-decomposition Sp of N such
that for every S-component of Sp) there exist no bad handles.
Conversely, if N is an SMA net, then for any S-component of
N, there exist no bad handle. ¢
Theorem 1 is useful for modular synthesis and anal-

ysis of SMA nets. To examine the condition, all the sets of
parallel paths and the return paths of an S-component have to
be found. However, it is very difficult and takes too much
time., Thus, we consider to examine the condition without
finding all the set of parallel paths and the return paths of an
S-component. At first, we define two binary relations, called
permissible relation and forbidden relation, defined over the
Cartesian product TjxTj, where T; is the set of transitions in
an S-component S; of an SMD net. .
Definition 9. Let S;=(P;,Tj;F;) be an S-component of an SMD
net N=(P,T;F), and R be the Cartesian product TixT;.
(ta,tb)e R is said permissible in S, represented by taPty, if
ta=tp or there does not exist an elementary directed circuit
which contains tg but does not contain tp, in Sj. Conversely, if
there exists an elementary directed circuit which contains tg
but does not contain ty, in S;, then (tg,th)e R is said forbidden
in 8j, and represented by ty&th. Moreover, for & tt-handle
mti-tg of Sy, if ti?tj, then n is called permissible handle of S;.
Similarly, if tjFt;, then = is called forbidden handle of S;.
Let the net in Fig. 1 be an S-component of an SMD net. There
exist no directed circuits which contains tj but not tg, thus
t1Pt2. On the other hand, for (i5,tg), there exists a directed cir-
cuit C=p) —-t5-ps-t7-spg—+t4—sp) which contains t5 but not tg,
then t5Ftg.
In fact, a forbidden handle of an S-component is equivalent to
a bad handle of the S-component. Here, we establish the
equivalence.
Theorem 2. Let Si be an S-component of an SMD net. The fol-
lowings are equivalent. (1) There exists a bad handle of 5j,
(2) There exists a forbidden handle of Si. ¢
Now, the original problem can be divided into two sub-prob-
lems, as follows.
_8P1. Find an S-decomposition of the given net.
SP2. Decide the existence of forbidden handles of an S-com-
ponent. '
For SP1, a polynomial order algorithm is already obtained by
the authors [9][10]. The algorithm is based on an SM-alloca-
tion and the well known depth-first search algorithm (111.
Algorithm 2, Find an S-decomposition of a net N«(P,T;F,
Mo).
Set Sp=¢ and weight of every place in P to be zero.
Repeat{ /Find a set of S-components covering N/
For (there exists a place whose weight is zero)

Select a place pj whose weight is zero.

Generate a depth-first search tree, tree-i, by

selecting pj as the root.

For any transition in T, allocate the input place on tree-i.

Do SM-reduction in Algorithm 1, according to the

TABLE 1 An Rtable of the
netin Fig. 1
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Figure 1 An S-component

allocation.
Let. S; be the SM-reduced net.
1f 8 is an SCSM, then
Sp:=SpuiS;) and add 1 to weight of every place in §;.
Else, then
gote End 2
}
Repeat { /guarantee minimality of an 8-decomposition/
For ( there exists an S-component, in Sp, whose each place is
weighted more than 1)
Find an S-component Sk=(Pk,Tk;Fk) whose each place
is weighted more than 1.
Sp:=Sp-{Skl.
Subtract 1 from weight of every place in Pk,

}
End1 Output "Sp" and end.
End 2 Output "N can not be an SMA net" and end.

The computational complexity of Algorithm 2 is O(mZn2).
The validity of Algorithm 2 is guaranteed by the following
lemma.
Lemma 2. {9] For an SMA net N=(P,T;F), the set of S-compo-
nents obtained by Algorithm 2 is an S-decomposition of N.+
If an output of Algorithm 2 is a non-empty set of SCSMs, then
N is an SMD net and may be an SMA net. For 8P2, we con-
sider a polynomial order algorithm to decide the relationship,
permissible or forbidden, between each ordered pairs of tran-
sitions in an S-component. The output of the algorithm is a
table, denoted by Rtable, which shows an ordered pair of tran-
sitions is either in the permissible or the forbidden relation.
The procedure is deseribed as follows,
Algorithm 8. Generate an Rtable of an S-component
Si=(P{,T§;Fi).
Generate a IT{IxIT;! table RTj, and mark each element
with O.
Set 1i=Tj
Return { -
For ( tj2¢)

Select a transition thet;.

Delete ty and the incident arcs from S;j.

Divide the reduced net of S; into strongly

connected components,

Let Tja be the set of transitions such that any transition in

Tja is isolated node in the reduced net.

VYtaeTia, (ta,th) or (th,th) is permissible.

Let Tig'=T;-Tia.

Vta'e Tia', (ta',th) is forbidden.

Change the mark of (ta',th) element of RTj into X

1ii=1i-th

)

The computational complexity of Algorithm 3 is o(m2). We
claim that, in an Rtable, O and X marks correctly an ordered
pair in the permissible and the forbidden relations, respec-
tively. For the validity of the algorithm, we have the following
lemma,

Lemma 3. For an S-component of a net N, the output of
Algorithm 3 pgrees with the definitions of the permissible and
the forbidden relations. ¢

For the net in Fig. 1, the output of Algorithm 3 is summarized
in Table 1.

Finally, it remains to construct a polynomial order algo-
rithm to decide the existence of forbidden handles of an S-
component, We congider an algorithm to generate a table,
denoted by Hioble, which exhibits the existence of tt-handles of
an S-component between ordered pair of transitions. The al-
gorithm is based on a simple depth-first search algorithm.
Algorithm 4. Generate an Htable of an S-component
Si=(P;,T;;F}) of N=(P,T;F).

Delete all places in Pj and all the incident arcs from N,

Let N' be the reduced net.

Generate a ITj{x!Tjl table HTj, and mark each element
with X.

Set 1i=T;.
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Return {

For (1i=¢)
Select a transition t¢ in 1.
Do depth-first search from t,.
If there exists a transition tde Tj during depth-first
search, then change the mark of (t¢,td) element of HT to
O and continue depth-first search,
1:=1i-th.

The validity of the algorithm is cbvious, and the computa-
tional complexity of Algorithm 4 is O(m2n). If (ti,tj) element
of the Htable of S is marked by O, there is a tt-handle mtj—t;
of Si.
The existence of forbidden handles of an S-component
Si can be decided by comparison of Rtable with Htable of Sj. If
(ti,tj) element is marked by X in Riable and is marked by O
in Htable, then there exists a forbidden handle from ¢; to t of
Si. Otherwise, there exist no forbidden handle of S; from t; to
ti.
lgbove three algorithms can be summarized in the following
algorithm. '
Algorithm 5. Decide a given net N=(P,T;F) is an SMA net or
not.
Find an S-decomposition Spy by Algorithm 2.
If there does not exist Sp, then
goto End 2.
Else, then
Repeat(
For (each S; in Sp)
Generate the Rtable of S; by Algorithm 3.
Generate the Htable of Sj by Algorithm 4.
Test by comparison the Rtable and the Htable.
If (tk,t}) element of the Rtable is X and that of the Htable
is O, then
goto End 2.

1
End 1 Output "N is an SMA net", and end.
End 2 Output "N is not an SMA net", and end.

The computational complexity of the algorithm is O(m2n2),

4, Liveness of an SMA nets
In this section, we consider a polynomial order algo-
rithm to decide the liveness of an SMA net.
Lemma 4, {2]i8] Let (N,Mp) be an SMA net. (N,Mp) is live if
and only if any S-component in N has at least one token. ¢
From Lemma 4, liveness of an SMA net (N,Mg) can be de-
cided by finding all S-components of N and examining the
existence of tokens in each S-component. Unfortunately, the
computational complexity to find all S-components of N is
O(mP). However, from Lemma 4 and the fact that the set of
places in an S-component is a minima) deadlock of N, we can
derive another necessary and sufficient condition for the
liveness of SMA nets described as follows.
Theorem 3. An SMA net (N,My) is live if and only if there ex-
ists no token-free deadlocks.e
Now, the problem is reduced to find a set of token-free dead-
locks of a Petri net (N,Mp), which can be solved by the follow-
ing algorithm.
Algorithm 6. Decide the existence of a token-free deadlock of
a net (N,Mq)
Delete all marked places and the incident arcs.
Repeat { /Find a token-free deadlock of (N,Mgp)/
For (the reduced net is to be empty)
Divide the reduced net into strongly connected
components.
If there exists a strongly connected component in which
all input transitions of the place are include, then
goto End 2.
Else, then
delete all the places and the incident arcs.
Delete all isolated transitions.

End 1 Output "there is no token-free deadlock” and end.
End 2 Output "there is a token-free deadlock”, and end.

The computation complexity of Algorithm 6 is QO(mn?), The
termination of Algorithm 6 is obvious since N can be divided
into at most n pieces of strongly connected components.Here,
we show the correctness of Algorithm 6.
Theorem 4. For a Petri net (N,Mg), there does not exist any to-
ken-free deadlock if and only if Algorithm 6 terminates at
End1l.e
From Theorem 3 and 4, the liveness of SMA nets can be de-
cided by Algorithm 6. If a given net (N,Mp) is decided to be an
SMA net by Algorithm 5, and to be live by Algorithm 6, then
(N,Mp) is a live and bounded. Now, we can decide whether a
given net is a live and safe SMA net by the following algo-
rithm. Thus, we can easily construct O{m2n2) algorithm to
decide whether a given net is a live SMA net or not, from
Algorithm 5 and 6 as following. .
Algorithm 7. Decide a given net (N,Mp) is a live and safe
SMA net or not
Decide N is an SMA net or not by Algorithm 5.
1f N is not an SMA net, then
goto End .
Else, then
decide (N,Mg) is live or not by Algorithm 6.
1f (N,Mg) is not live, then
goto End.
Else, then
decide (N, M) is safe or not by Algorithm 8.
If (N,Mp) is not safe, then
goto End.
Else, then
output “(N,Mg) is a live and safe SMA net"
and end.
End Output “(N,Mg) is not a live and safe SMA net" and end.

5. Conclusion

0(m?n2) order algorithm to decide a live SMA net has
been obtained. The algorithms obtained in the paper is useful
to verification of concurrent systems,
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