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Abstract - A generalization to the
Digital Prolate Spheroidal Sequences is
investigated, so that the Generalized
Digital Prolate Spheroidal Sequences
(GDPSS's) can be used as a powerful
time window with many desirable
properties.

The GDPSS's in the form of the time
window has 3 parameters with which we
can control the shape of the windew
freely. Hence, GDPSS's can be used as
the very useful time windows especially
for digital distance protection.

I. INTRODUCTION

Between time and frequency
representations of signals, there are some
kinds of inherent uncertainty relations
which make it impossible to measure a
time-frequency position of a signal with
arbitrary precision. This phenomena is
known as the Uncertainty Principle. It
sometimes determines the lower bounds of
the signal resolutions or sometimes the
upper bounds of the energy concentrations
in the time-frequency domain.

Each type of the uncertainty relation
corresponds to its own uncertainty
measure. With this measure, we can
determine a wave packet having the
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minimum uncertainty, which is frequently
used as an optimal window.

Since there is no single optimality
condition, we must choose one of the
optimal senses by their properties.

The Prolate Spheroidal Wave Functions
(PSWF's) [1] play very important roles in
signal processing. Time windows using the
PSWF's have a property of the maximum
energy concentration in a given frequency
range. Discrete time versions of the
PSWEF's are called the Digital Prolate
Spheroidal Sequences (DPSS's) [1].

Discrete time windows using the DPSS's
have two parameters, the time duration and
interesting frequency range where the
maximum energy concentration is to be
obtained. But two is not enough to control
the shapes of the windows in the
applications as the digital distance relay.

This paper shows that the effective time
duration can be adopted to the DPSS's as
the third parameter. As a result, we can
control the shapes of the windows more
freely using the Generalized DPSS's
(GDPSS's).

Finally, a strategy is stated to determine
the three parameters of the GDPSS's under
some specifications of design parameters as
in the digital distance relay.

II. FORMULATION OF THE GDPSS'S
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Let's first define the Fourier transform
pair of the finite-duration (-M to M)
discrete-time sequence {yp}.

Y(w) = id: yn e*TO (1)
n=-M
_1 (% inwTo
Yn=o l_w_o Y e™Tdo  (2)
i (woTo =2x)

The optimization problem related to the
GDPSS's is as follows.

max 6= % |Y(w)|?dw 3)
(0 < n<“’7°)

,where the constraints are
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wo | 2, | Y(w)|2dw =1 4
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M
or equivalently E fynl2=1, @4
n=-M
M
E n? |yp|? = o2, &)
n=-M

(0<a< M)

and finally we require that y,, 's are real.

Since B has the upper limit determined by
the Uncertainty Principle, this problem is
well defined, thus has a solution.

There are three parameters in this
problem, i.e. M,Q, and «. M determines
the time duration of the sequence. Q
determines the interesting frequency region
where the optimization is performed. «
determines the effective time duration of the
sequence.

Now let's solve the problem. First, we
define ' as follows using two Lagrangian
multipliers -2\ and -2u. ( -2 factor for
mathematical convinience )

8 =2 |Y@]2do + (20 ¥ lypl?
+ (20 Y n? |ynl? 6)

Then, we calculate %' 's for all n=-M
dyn

to M, and let them be zero to get the
solution,

P Q * aY
dyn —]-ﬂ 2Re [Y (w) 6—yn(w)} dw
~4ya (A +pun2)=0 0)

Calculating the integral in (7) using (1),
we obtain

M
Z ¥Ym sinc [QTo (m-n)]=y, (N + p n?)
m=-M
®

Now, the optimization problem is
converted into the algebraic equations (8),
(4') and (5), where 2M+3 equations and
2M+3 unknowns are involved. For
convinience, let's use matrix notations.

Ajj =sinc [ © To (i-)) ],
Nij = j2 5ij R
where i,j is varied from -M to M.
Using these elements, we can define
A,N,y. Rewritting (8),(4'), and (5) using
A,N,y, we obtain

Ay = Ay + u Ny 9
yly =1 (10)
YNy = a2 (11)
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Let's modify (9) as
(A-uN)yOm = N yOw  12)

, where index i represents the i-th eigen

value and the i-th eigen vector and index u

represents that y and A are functions of p.
From (3), we obtain

[2 1Y@|?da =20 (N + pa?). (13)

(13) means that we should choose the index
i which gives the maximum value of the
eigen value for a given p.

Therefore, we can easily set up the
procedure for finding unknowns in (9),(10)
and (11).

1. Let the initial value of p = 0.

2. From (12), calculate the maximum
eigenvalue and the corresponding
normalized eigenvector.

. Calculate yT™Ny - o2 .

4. Find next u by the bisection algorithm
using the sign of the result in step 3
and return to step 2 if not reached
the solution.

W

III. EXAMPLES

It is sometimes required for a time
window to distinguish the fundamental
frequency (60Hz) and the next dominant
frequency ( for example, 120Hz ). This
requirement corresponds to the maximum

energy concentration in the frequency range
of about -30 to 30Hz. Therefore, Q can be

27*60 1
choosen as 5 Let To = 012 for 12

samples in one period.

Example 1)
o =10.5
energy concentration § = 0.36
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fig. 1 Time sequence of example 1
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fig. 2 Fourier Transform of fig. 1

At the same condition original DPSS gives
o = (0.7 and
energy concentration 8 = 0.39.
Therefore, we can conclude that the GDPSS
gives a more desirable solution.

Example 2)
o =-0.58
energy concentration 8 = 0.74
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fig. 3 Time sequence of example 2
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fig. 4 Fourier Transform of fig. 3

IV. STRATEGY TO DETERMINE M,Q,«

Physical meanings of the parameters of
GDPSS's can be understood by thinking the
strategy to determine the parameters. As a

copcluding remark,. a simple strategy is
introduced here.

1. Amount of calculations available for
windowing.
=> determine M
2. Acceptable time delay by windowing
= > determine o
( Effective time delay is « + M)
If inconsistent with M, reduce M.
3. Frequency boundary to distinguish the
fundamental frequency and the next
dominant frequency.
= > determine
4. Satisfactory energy concentration in the
frequency region? If not, increase « and go
to step 2.
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