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Possibility of Using the Classical Mechanics for the Preliminary Design of
Laminated Composite Structures for Civil Construction
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Abstract

At the preliminary design stage, the orientations of laminae in a laminate

are not known.

This fact discourages the most of engineers from the beginning.

If the quasi-isotropic constants are used, it halps the design engineer greatly

to start his work.

If conventional mechanics and elasticity theories can be
used, the effort for design and analysis is greatly reduced.

This paper reports

the possibility of using the classical mechanics at the preliminary design stage

for the
result is quite promissing

laminated composite primary structure for civil construction.

The

1. The Importance of the Subject Problen

The highest specific strength and stiffness
of composites can be obtained by arranging

long fiber reinforcements in straight
fashion, and forming a laminate nade of
several laminae. Design and analysis of a
laminate is so much complicated that

considerable number of structural engineers
are simply allergic to composite design. In
analysis, even boundary conditions are not so
simple as with the classical mechanics or
elasticity cases. Both simple and clamped
boundaries have eight possible types.

For simple support ;

Un=Un, ut=ut

Type 1: w=0, Ma=0,
Type 2 ¢ w=0, Ma=0, Nn=Na, ue=ut

- = 1
Type 3 ¢ w=0, Mn=0, un=ua, Nnt¢=Nn¢ (1
Type 4 : w=0, Ma=0, Nn=Nn, Nn¢=Nn¢

For clamped edge

Type 1 : w=0,—%§— = 0, Un=Un, ue=ut
Type 2 : w:o,—%%— = 0, Nn=Nn, w=ue  (2)
Type 3 w=0.-%%— = 0, un=un, Nne=Nnt
Type 3 @ w=0.*%%- = 0 Nn=Na, Nne=Nne
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where the upper bar indicates the given
value. Even when the transverse shear
deformation is neglected, the related
equations are three simultaneous fourth
order partial differential equations, given
as Eqns(7-72), (7-73), and (7-74) in Ref(1).
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Considerable simplification can be made in

preliminary analysis, if
A. classical mechanics
theories can be used.

B. the bending-extension coupling nmatrix,
Bij, vanishs so that related equation
becomes one fourth order partial differdrtial
equation.

and elasticity

2.Possibility of Simplified Approaches

The classical theories and formulas can be
used if the normalized extensional stiffness
equals the normalized bending stiffness, that
is

A* = D* (6)
where

A* = A/h in GPa

B* = 2B/h? in GPa 7)

D* = 12D/h3® in GPa
in which

n
Aij=k§1 ( Qij )x (hx-hx-y),
Bije— 2 ( @k (h2eb?er),  (8)
i j= 2 ket ijglk k k=1),

1 n _
Dij=— 2 ( Qij )x (h3k~h3k-y),
3 k=1

h=the thickness of the laminate

where the 515 Is the reduced stiffness matrix

for the plane stress cases given as
Q11 = Q11m9+2(Q12+2Q66)02n2+Q22n4
Q12 = (Q11+Q22-4Qs6)u2n2+Q1 2 (n4+n*)
Qi3 = Q13m2+Q23n?
Q16 = ~Q22mn3+Q1 143n—(Q12+2Q64) mn(n2-n2)

Q22 = Q11n%+2(Q12+2Q6s6)m2n2+Q2 204

Q23 = Q13n2+Q23m2
aza = ~Q22m3n+Q1 1an3+(Q12+2Qs6) mn(m2-n2)
Q33 = Q33
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Qa6 = (Q13-Qz3)an (9)
Q44 = Qa4n2+Qs5n2
Q45 = (Q55-Qqq)mN
@55 = Qs502+Qq4n?
@ss = (Q11+Q22-2Q12)n2n%+Qgs (a2-n2)2
in which Qi; is given as
Q1! = __El—__
I~viz2vazs
Qs = v 12E2 = v 21Es
1-vi2va2 1-vizv2t (10)
Qy = —F2
1-vizv21
Qss = G12

and, m=cosa and n=sina, where a is the angle
of the transformation.

It is generally known that the bending-
extension coupling matrix, [B], vanishes only
if the cross-section of a laminate is
symmetrical, in both material, and geometry
and orientation, with respect to its
ridsurface. However, a sufficient condition
to eliminate the bending-extention coupling
is that the sum of the normalized weighting
factors of each group of orientation is equal
to zero (Ref 10-210, 10-211, and 10-212 of
ref 1). In addition to such condition,
increase of the number of layers for certsin
orientations for such as the thick laminates
of the primary structures for the civil
construction may result in negligibly small
quantity of B-matrix.

3, Quasi-isotropic Concept

In his recent book(1), D.H. Xim proposes
to use the quasi-istropic constants by Tsai
for the preliminary design of the composite
primary structures for the civil
construction. This concept is indirectly
supported by the recent paper of Verchery et
al(2).



Every anisotropic material has
quasi-isotropic constants derived from the
invariants of coordinate transformation,
These constants represent the lower bound of
each composite performance, and are given by
Tsai(l) as

U Us O
[Qlise = | Uy U1 O
0 0 Us
where

1
Ug= E(3Qxx+3ny+2Qxy*4Qou)
1
Ug= E(Qxx+ny+6Qxy‘4st)=Ul'2U5

Us= %(Qxx*ny*ZQxy+4Qsa)

When quasi-isotropic constants sre used we
always have A* = D*, B* = 0.

4, Numerical Studies

In order to
A. study the validity of wuse of the
quasi-isotropic constants,

B. find the laminates with A*= D*, and Bij =
0, several laminate configurations with
different orientations and numbers of layers
are studied. The result is rather promising
and shown in next article.

The material property used is as follows

En= 3.8 GPa
Efr= 70 GPa
vo= 0.35

ve = 0,22
Vo = 0.4

Ve = 0.6

From these values, we obtain
E:+ = 67.36 GPa

Ez = 8.12 GPa
viz = 0.272
vz1 = 0.0328
Gi2 = 3.02 GPa

5, Study Result

A. Quasi-homogeneous laminates(A*=D*)
1)When quasi-isotropic constants are used.
A* = D*
2)Angle ply laminates ,[+ 8 1r.
A*=D*
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g=t15°
11
1

0.01

Table 1.
3
1

0.039

[+8]r
5
1

0.023

8 20

1
0.014
0.0026]0.0016§ 0.001]0,0007|0.0006 |0.0005
(giss| 1.96 | 1.98 1.96] 1.96 | 1.96 |1.96

3) Quasi-isotropic orientation, [90, +45, -45, 0}r
A* >~ D* A * is constant.
The differences are 4.4% when r=2 and 0.2% when r=9.
Table 2. [90,+45,-45,0]~

17
1

0.007

14
1

0.008

0.0056
0.0004
1.96

1

2

3

4

5

6

0.845

0.956

0.98

0.99

0.993

0.995

0.996

0.997

0.31

0.18

0.12

0.09

0.07

0.06

0.053

0.04

D’i
11 LX3

1.05

1.02

1.01

1.007

1.005

1.0039

1.002

4) Special Orthotropic
The differences are

Table

laninates, [0,90,0] orientation
27% when N=3 and 3% when N=51.
3. [0,90,0] Orientation

Ply nuaber (N)
PE 3

3

7

11

15 19

27

51

A
D1, *

0.731

0.835

0.883

0.909

0.926

0.307

0.97

(5) Special Orthotropic
The differences are 45% when
Table 4. Special Orthotropic Laminates [90,0,90] Orientation

laminates, [90,0,90] orientation.
N=5 and 3.6% when N=45.

Ply nugger (N) 5 9 13 17 21 45
i1 1.56 1.233 (1.148 1.107 1.083 1.036
(6) [ABBCAAB]- orientation with A=45°, B=-45°, C=0°
Table 5. [ABBCAAB]:. A=45°: B=-45°, C=0°
r(N) 1(7) 2(14) 3(21) 4(28) 5(35)
- "’ 1,268 1.056 1.024 1.013 1.008
ij =0 =0 =0 =0 =0

This orientation has fairly good quasi-homogeneous characteristics when r > 2,

(7) [ABCCABBCAl- orientation with A=45°, B=-45°, C=0°.

Table 6. [ABCCABBCAl- A=45°¢, B=-45°, C=0°,
r(N) 1(9) 2(18) 3(27) 4(36) 5(48)
iy 1.13 1.03 1.013 1.007 1.003
ij =0 =0 =0 =0 =0
This arrangement has fairly good quasi-homogeneous characteristics when r 2 2
(8) Antisymmetric Angle-Ply [ABBAAB], A=+15° B=-15¢
r number 3 7 11 15 19 27 51
freg 0.0105[0.0052 |0.0035/0.0026 | 0.0021 | 0.0015[ 0.0011
Bis 0.0015]0.00075|0.0005|0.00037[0.00030 |0.00021{0.000166
(9) Symmetric Angle-Ply [[45,-90,30,0]r]s
[ r number I 21 4 ! 6 [ 8 ] 10 1 12
—%ff; '0.3454'0.2016 0.1960I0.1935 l 0.1922 | 0.1913I
—%%%;: 0.305810.1402 |0.1338({0.1309 }0.1293 0.1284
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B. Elimination of the bending - extension
coupling stiffness, Bij,

(1) when quasi-isotropic constants are
used.

(2) When the cross-section is symmetric
with respect to the midsurface of the
laminate,

(3) Angle ply laminate with N=36 number of
plies.

B= 0,

(4) [ABBCAAB]. A=45°, B=-45°, C=0°,

(See Table 5)
Bij = O.

(5) [ABCCABBCA]. A=45°, B=-45°, C=0°,

(See Table 86)
Bi; =0.

(6) [ie]r, @=15°, Bis is 2-30% of Dy,
when r=5 and 0.56% when r=20.

(7) Antisymmetric Angle-Ply
[ABBAAB],, A=15°, B=-15°
Bis = 0, Bz2s =0 as r increases,
See Figure (1) and (2)

(8) Symmetric Angle-Ply [[+45,-90,30,0,]r1s
Dis * 0, D26 ¥ O.

As r lncrease,
Di16*/D11%—0.2
D26*/D11*—0.13

See Figures(3) and (4)

6. Conclusion

The classical mechanics and elasticity
theories can be used for the preliminary
design of the laminated composite structures
if

(1) quasi-isotropic constants are used,
(2) laminates with certain orientations are
used, or

(3) certain "thick” laminates are used
especially for civil construction.

This will greatly reduce the calculation
effort at the early stage of the design,
Materials, orientations, and sizes for the
prelininary design can be decided by the
formulas obtained by the use of classical
theories. With the chosen sections, the
stresses and strains, with stability and
dynanic behavior taken into account, can be
found by rigorous theory. The
strength/failure theory will be applied then.
If necessary, the sections can be easily
podified. This is possible because of
versatility and flexibility of composite
design.
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