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ABSTRACT

An attempt has been made to generate a cured boundary by using a transfinite interpolation
technique. In the following sections, it will be shown how to construct transfinite
interpolants both in h-version and in p-version over polygonal and nonpolygonal regions.
Numerirical test cases validate the applicability and superior capability with the help of

© several structural probleas.

1. Introduction

The conventional finite element method involv
-es the partitioning of a polygonal domain(Q)
into rectangular and/or triangular elements.
Quite often, however, a structural engineer is
faced with a boundary value problem over a
nonpolygonal domain(Q). The early approaches
in finte element modeling required that the
boundary, 8Q, of 2 be approximated by a
polygonal arc. Obviously, the accuracy of the
F.E.M. is limited by the accuracy of the
polygonal approximation to 8. Thus, if a
mesh with a regular polygon as its boundary
serves to model a circular region, a
refinement of the mesh causes the polygon to
have more sides and to converge to a circle.
In the h-version, all piecewise smooth
boundaries can be approximated by a sufficient
number of piecewise quadratic polynomials. In
the p-version, however, the size..of the
element is usually large and hence the
probability of distortions is more, especially
if higher order parametric mapping is used,
unless the boundary of an element is
represented by a poynominal in the parametric
form. In the case of nonpolygonal boundaries,
like circles and ellipses, parametric mapping
may not work at all, An attempt has been made
to generate a curved boundary by using a
transfinite interpolation technique. This
technique has been discussed in detail by
Gordon and Hall. So, this paper represent an
approach to apply the transfinite
interpolation technique based on p-version of
finite element concepts to several structural
probleas. ‘
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2. Transfinite Interpolation Technique

let f be a continuous function of two
independent variables with domain L ;: [0,h] x
[0,h] in the s-t plane as shown in Fig. 1. By
a projector P, we mean a linear operator froa
the linear space T of all continuous
bivariate function f, with domain L, onto a
subspace of functions, For example, if the
operator Ps is defined by the formula

Pe[f] = (1~s/h)f(0,t) + (s/h)f(h,t) 1)

It can be expressed by the general form as
follows:

Pa[f}]

;;Of(s,-.t)qn(s) (2)
where O = so{s1¢...$sma = h and

di(s) = jli(S‘Sj)/Jli(Sl‘Sj) Osi<m (3)
are the fundamental functions for Lagrange
polynomial interpolations.

For completeness and later reference, we displ
-ay the analogous formula for Pi:

Pulf) = gof(s.t.i)m(t) (4
where 0 = tolty... <tn = h and

Yit) = H‘J(t'ti)/x]lj(t,j—ti) Osjsn  (5)

There is a way to compound the projectors Pe
and Pt by using Boolean sum.

Ps ® P = Ps + Py - PaPt (6)
3. Transfinite Interpolants in P-version

The transfinite interpolants for curved bound
-ary can be achieved by constructing blend
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functions. First, each side of the element
with arbitrary boundaries is defined by
parametric equations in terms of standard
coordinates shown in Fig. 2. and Fig. 3. The
transfinite interpolants for each side of the
element are expressed as:

st {3 I0E)
ez (2N
e {INNE)
side s L J I

The suitable transfinite interpolants of each
side have been derived for the plane domain
and cylindrical domain. The individual mapping
functions are blended with the opposite sides
of the element by wmeans of projectors
(n-1)/2, (£+1)/2, (n+1)/2, (&-1)/2.

In the process, the mapping functions take the
following form by Boolean sum.

X=x1(8)(1-5)/2 + x3(&)(1+n)/2

+ %2()(1+£)/2 + x4{ 7)(1-E)/2

- x1(1-8)(1-7)/4 - x2(1+&)(1-7)/4

- x3(1+£)(1+n)/4 - x4(1-&)(1+n)/4

&)

Y =yi1(&)X(1-7)/2 + ya(E)(1+7)/2

+ y2(n)(1+£)/2 + ya(n)(1-&)/2

- v1(1-8)(1-7)/4 - y2(1+ £)(1~-7)/4

- x3(1+£)(1+7)/4 - x4(1-£)(1+7n)/4

4. Numerical Tests
4.1 Circular Plate

One quarter of a circular plate of radius, a,
subjected to a central concentrated load shown

in Fig. 4. , p=1.0 lb(or uniformly distributed

load qo=1.0 psi), is wmodeled with one
p-version element which maps the circular
boundary by transfinite interpolation
technique as discussed earlier. The result by
p—version of the finite element rethod are
presented in Table 1.

4.2 Thick-Walled Cylinder

This is a thick-walled cylinder under plane
strain conditions subjected to a unit internal
pressure., The problem is shown in Fig.5. The
geometry of the problem is the same as on
example of SAP90 verification manual. For the
pressure loading, the results obtained by
theoretical and SAP90 analyses for the radial
displacement and stresses at the inner surface
are compared with the results from one elesent
p-version model in Table 2 and Figs. 6, 7, 8
and 9.

5. Conclusions

It has been established a class of transfinite
interpolation formula based on the use of
blending functions. It may be noted that in
the case of both triangular and quadrilateral
elelments one or more of the boundaries may be
curved, in which case mapping from standard
elements becomes more important. Moreover, the
concepts of exact mapping in the p~version can
be stressed on since large elements are used.
The p~version element based on transfinite
interpolation technique 1is found to be
successful in the case of plane and
cylindrical shell problems.
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Fig. 1 Domain L in the s-t plane
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Fig. 2 Transfinite Interpolants From
Standard Domain to Real Domain in the
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Fig. 3 Transfinite Interpolants Form Standard
Domain to Real Domain in the Cylinder

Table 1

Max. Deflection at the center for clamped
and simply supported cicular plate

-

P-level w___(Uniform load) ¥ (Point load)
am K- Chmped | S3.
4

P=6 0.23680 1.01902 0.08850 0.19558

1 olement P=7 0.24511 1.02410 0.0750¢ 0.19930

1 2 * P=8 0.24978 1.02572 0.07768 0.20151

P=9 4 Toeson 1.02808 0.07856 0.20264

. 125026 1.03997 07908 0.20542

Fig. 4 Centrally Loaded Circular Plate with P=10 0.25026 o °
Clamped and Simply Supported Outer Edge Timosbenkd  0.25000 1.01923 0.07958 0.20200

17




INNER RADIUS =3.0
OUTER RADIUS = 9.0 s
MODULUS OF ELASTICITY = 10.0 x 10
POISSON'S RATIO = 0.3
X
Fig. 5 Configuration and mesh refinement
of thick-walled cylinder
Table 2
Convergence Characteristics of
Displacement and Stresses
P-level NDOF Radial Radial Tangential | Longitudinal
Displ.x10-% Stress Stress Stress
1 4 0,352345 -0,267 1.48 0. 502
2 8 0.438688 -0.298 1.43 0.354
3 16 B 0.455675 =0.704 1.35 0.199
4 24 0. 457959'” ; ~0,889 1.30 0. 1.22
5 34 0.458220 -0.961 1.27 0.092
6 46 0,458247 -0.987 1,26 0.081
7 60 0.458250 -0.996 1.25 0.077
8 76 0.458250 -0.999 1.25 0.077
9 94 0.458250 ~-1,000 1.25 0.075
SAPS 396 0.4582 -0.99 1.28 0.08
Theoretical 0.4582 -1.0 1.25 0.075




RADIAL DISPLACEMENT x 10-5

TANGENTIAL STRESS

THICK-WALLED CYLINDER
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Fig. 6 Convergenbe of radial displacement
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Fig. 8 Convergence of tangential stress
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Fig. 7 Convergence of radial stress
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Fig. 9 Convergence of longitudinal stress



