Grain 이 Align 된 고온 초전도체의 자기적 특성

충북대학교 김 문 석*, 이 주 일, 유 성 초 고려대학교 임우 영

The Magnetic Properties of Grain Aligned High - To Superconductors.

Chungbuk Nat'l University Mun-Seog Kim* Joo-II Lee Seong-Cho Yu Woo-Young Lim

Korea University

1. Intorduction

It is well-known that single crystal high-T_c superconductor exhibits large magnetic anisotropy. Farrel et al.11 studied the magnetic anisotroy in a grain aligned YBCO superconductor, which have similar magnetic properties to single crystal superconductor.

In this paper, magnetic properties of a high Tc superconductor, which is grain-aligned at room temperature, are studied. Unlike bulk superconductors, depending upon whether the external magnetic field is perpendicular or parallel to the Cu-O plane, prominent magnetic anisotropy is found in this sample. Both the He1 and He2 are experimentally measured and the penetration depth (λ) and the coherence length (\$) are derived from these Hc1 and Hc2.

2. Experiments

The samples were prepared by conventional solid-state reaction method. The crystalline grains were permanently aligned by vigorously mixing the powder with an epoxy(Duro TM-51), followed by curing for about an hour in a magnetic field of 11 Tesla at room temperature. Both the superconducting quantum interference device(SQUID) magnetometer by Quantum Design and the vibrating sample magnetometer (VSM) by EG&G are used in our investigation of magnetic properties of Y-Ba-Cu-O and Bi-Pb-Sr-Ca-Cu-O compounds.

* 본 연구는 1990 년 과학기술처 특성연구 개발비에의해 수행되었음.

3. Results

Fig. 1(a) shows the typical peaks of YBCO powder, obtained from the X-ray diffraction, before the grain alignment. Here the lattice constants are given by $a=3.82527\,\text{\AA}$ $b=3.93557\,\text{\AA}$ and $c=11.64772\,\text{Å}$. Fig.1(b) shows the X-ray diffraction pattern of the crystalline grain sample aligned along the c-axis. Note here that the peaks appearing in Fig.1(a) vanished, and (0 0 5) and (0 0 6) peaks are distinctive while (0 0 4) peak had grown up a little²¹. This implies that the crystalline grains are well aligned along the c-axis. We have determined all the macroscopic parameters including the coherence length, ξ , the penetration depth, λ , and Ginzburg-landau parameter, κ , lower and upper critical field, H_{c1} , H_{c2} , which are tabulated in table I.

4. Conclusions

- i. The magnetic moment of grain aligned samples in the presence of a magnetic field applied perpendicular to the Cu-O plane is approximately ten times the magnetic moment in a field applied parallel to the Cu-O plane.
- ii. The calculared critical current density of aligned samples is increase more than about 10⁴ times than the unaligned samples.
- iii. We have seen that the magnetic anisotropy play a very important role in the superconducting aligned crystal grains.

Table I. Measured and derived anisotropic parameters of Y₁Ba₂Cu₃O_{7-y}.

parameter	perpendicular	parallel
∂Hc2 /∂T	-1.13 T/K	-2.19 T/K
Hc1 (79K)	90 Oe	< 67 Oe
H _{c2} (0)	74 T	224 T
κ	$\kappa_{a-b} = 72$	$\kappa_c = 224$
€(0)	€а-b = 21 Å	€c = 15Å
λ _{GL} (0)	$\lambda_{a-b} = 1516 \text{Å}$	$\lambda_c = 3392 \text{Å}$
Hc(0)	0.7 T	0.5 T

Fig. 1. X-ray diffraction pattern of Y₁Ba₂Cu₃O_{7-y}.

REFERENCES

- 1] D. E. Farrell and B. S. Chandrasekhar, M. R. DeGuire, M. M. Fang, V. G. Kogan, J. R. Clem, and D. K. Finnemore., Phys. Rev. B36 (1987) 4025.
- 2] M. F. Yan, Ceramic Superconductors II, (Westervill, Ohio. USA, 1988) p. 332.