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Abstract

This paper investigates the relationship between the two
problems, supervisor reduction and observation function
(projection) design, which arise in supervisory control
of DEDS.

supervisor of minimal size does not necessarily result in

It is shown through an example that a reduced
a maximal projection when a projection design method
which uses the transition structure of a supervisor is
applied. Also, if an L-realizable projection P is avail-
able and if a supervisor has a special structural fea-
ture, a cover C for supervisor reduction can be easily
obtained. By investigating the control-compatibility of
states of the reduced supervisor based on C, we can also
check maximality of P in a simple manner.

1. Introduction

In this paper we are concerned with two important
problems that arise in the Ramadge and Wonham’s supervi-
sory control framework [1] for discrete event dynamic
systems (DEDS).

DEDS is modeled by a finite automaton G, and controlled

In the supervisory control framework, a

to perform a given orderly behavior L by a supervisor §
which is realized by a finite automaton S and an output
mapping ¢ of S, The output mapping ¢ assigns to each
state of S a set of events that are to be allowed to
in G, The desired behavior L is just a set of
orderly of that the

controlled DEDS: thus L can be obtained by excluding from

occur
strings events may occur in
L{(G), the set of strings of events that can occur in the
uncontrolled DEDS G, all those strings which corresponds
L is frequently

this

to disorderly evolutions of the system.
given by a finite automaton that generates L:
automaton is called a recognizer for L. A supervisor is
often unable to observe the occurrences of certain events
in G,

treated in this framework by placing an observation stage

This partial observation case can also be properly
between the supervisor and G. The observation stage is
modeled by a function, called an observation function or
is a set of all

a projection, P: Z—>XoU{&}, where X

discrete events in G, ZoCX, and & symbolizes the

null event, i.e., no occurrence of any event.
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Fig.1. shows the mechanization of supervisory control
We refer to [1] and [2] for
In the following,

with partial observations.
detailed discussions of the framework,
the reader is assumed to be familiar with the standard

supervisory control framework,

Supervisor
String of events in Xo
Observation
Sequence Function
of [:P:I
control
actions PPE-ZoU{e}

¢ |
B

DEDS

String of events in ¥

Fig,l, Supervisory Control of DEDS

Among many interesting problems posed in this frame-

work, supervisor reduction and observation function

design problem will be discussed in this paper. When a
desired behavior L is realizable, there exist many super-
visors that can do the job, Supervisor reduction problem
([3],[4]) addresses the question of how to obtain from a
supervisor S=(S, ¢ ) a reduced supervisor T=(T, ) where T
has smaller number of states than S,

function design problem ([5]), we consider the problem of

In the observation

obtaining an observation function with which a supervisor
can be synthesized to realize L. These two seemingly
independent problems at first look are in fact closely
related. Indeed, in the supervisor reduction problem, we
search for a set of states of S with "essentially the
same” control actions ¢( - ), and combine them into one
state achieving reduction in number of states. However,
the existence of such a set of states in S may imply that
the supervisor need not to observe the occurrences of
those events causing the transitions between the states
in the set: and if this is the case, then we immediately
Similarly, knowledge of a
In

obtain a proper projection P.
proper projection may lead to a supervisor reduction,
and

what follows, we elaborate on the above argument,



discuss when a maximal projection can be obtained and how
maximality of a projection can be checked.

2. Normal Supervisors and Control-Cospatible States

In this section, we introduce two important concepts
Throughout the

As usual,

concerning the structure of a supervisor,
paper we assume that L is closed, and LCL(G).
T=2uU X where Tu (XLc) denote the set of uncontrol-
lable (controllable) events. Thus only the events in ¢
can be disabled to occur in G by control actions from
the supervisor. L is said to be (Xy,L(G))-invariant if
LYuwNL{G)CL, and (P, £¢,L(G))-controllable if o=,
s,t€L, so€L, to€L(G) and P(s)=P(t) together imply
toel, (XTu,L(G))-invariance and (P, T¢,L(G))-control-
lability are necessary and sufficient conditions for L
being realizable {2].

Let P: £—%,U{e} be a projection, and let S=(S, ¢)
We write £ (w,x)!

In this paper,

with S=(X, X0, £,%) be a supervisor.

to mean that £ (w,x) is defined. every
automaton is assumed to be accessible (i.e., each state
of the automaton can be reached from the initial state).
Also, every supervisor is assumed to be complete unless
otherwise stated (see [1] for details of completeness of
a supervisor), Thus the closed loop system behavior,
represented by a set of strings of events and denoted by

L(S/G), can be defined recursively by ([5],[6])

i) ¢€L(§/G)
ii) wo=L(S/G) iff weL(S/G),
and wo €L(G).,

o= (& (P(w),x0))

In the above, we have used a tacit assumption that if w
eL(S/G), then & (P(w),xo0)! this property
follows immediately when the original definition of
L(S/G) ({1]1,[2]) is used. We say that § realizes L with
P if P is the observation function for S and L(S/G)=L.

In fact,

Definition 1,[3] A supervisor § is called (P,L)-normal
if ¢ is given in the following form: ¢=(¢o, ¢¢1), where

$o(x)={oceXc: I s€L such that &£ (P(s),xo)=x and

so€L(G)-L},
p1(x)={oeTc: I s€L such that & (P(s),xo)=x and

sag €L},

and @olx)Né1(x) = @.

A (P,L)-normal supervisor will be sometimes called just
normal when the associated P and L can be clearly identi-
Let or(x)=Zc-(go(x)U ¢1(x)).
Then it follows from the definition of ¢o and ¢1 that

fied from the context,

$r(x)={oETc: for all s€L such that £(P(s),xo)=x,
s o &L(G)}.
¥hen S is normal, we interprete the control mechanism of

the closed loop system as follows: if ce¢o(x), ¢
disabled to occur in G, If o€ ¢ 1(x)UXyu, o is allowed

is
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to occur. Finally if o€ ¢r{x), the supervisor does not
care because either the state x cannot be reached by a
string s€P(L) or the event ¢ cannot occur after s in G.
@(x) in the definition of L(S$/G) can be
defined to be any set satisfying & 1(x)UXuCe¢(x) and
do(x)NP(x) = 0.

Therefore

In other words,

¢(X)=ZuUd>1(X)U ¢rs(x). (1

vhere ¢rs(x)C ¢r(x).

Remark 1. The condition ¢a(x)N¢1(x) = @ in Definition
1 is necessary for any supervisor being able to produce a
proper control action. A slightly different definition of
normality has been given in [3].

Let A=(Y, £, 77,y0) be a finite automaton, The image of
A under P is a finite automaton B=Ac(Z, Yo, £,z0), where

Z=2Y, z0={m(s,yo): P(s)=g},

{n(s,y): yEz, P(s)=0}, if this is nonempty
tlo={ 7 ,

undefined, otherwvise.

It is easy to verify [2] that £ (w,zq)={7(s,y0): P(s)=w}
whenever the right hand side is nonempty, and £ (w,zg) is
undefined otherwise. Frequently, the finite automaton S
of a supervisor $=(S, ¢) which realizes L with P is the
image under P of a recognizer for L. In this case, S can
be made normal simply by redefining ¢ according to the
rule in Definition 1. The following lemma shows that

this is indeed possible.

Lemma 1, Let L be (P, ¥£¢,L(G))-controllable, and let A be
If S is the image of A under P, then
the output mappings ¢o and ¢ defined as above at each
state x of S have the property that ¢o(x)Ne¢i1(x) = 0.

a recognizer for L.

Proof Let A=(Y, X, 77,y0). Suppose that there exists g€
¢o(x)N@p1(x). Then =3¢, and there exist s, t&L such
that £(P(s),x0)=& (P(t),x0)=x, sd€L(G)-L and toEL,
Let y=727(t,yo}. Since tog=L and A is a recognizer for L,
n(o,y)! Moreover, yEx=£(P(s),xo0). Hence there exists
wEX"* such that 7(w,yo)=y and P(w)=P(s). Note that
n(wd.yo)!, Thus we have two
strings s, wEL and o« ¥ which violate the condition of
(P, £¢,L(G))-controllability of L.
do(x)N1(x)=g. Q.ED

and therefore wo €L,

Hence we must have

Proposition 1, Let L be closed and (¥4, L(G))-invariant.
If S is complete and (P,L)-normal, S realizes L with P.

Proof (L(S/G)CL) By induction., Suppose that s o &L(S/G).
Then, by the definition of L($/G), s=L(S/G), so<L(G)
and o€ ¢(x) where x=& (P(s),xo). Thus s€L by the
induction hypothesis. Moreover, o€ ¢r(x), and therefore
c€¢i1(x)UZu. if o=Xy, then sg€L by the
(Xu,L(G))-invariance of L. If c&3X; and sge<L(G)-L,
then o« ¢po(x) which violates the condition that ¢g(x)
Ne¢i(x)=p. Thus if =T, #e must have s o L.

Now



(LCL(S/G)) By induction. If sg €L, then s€L since
L is closed. By the induction hypothesis, s€L(S/G). Let
x=£(P(s),x0). By the definition of ¢1, g€ ¢;i(x) so
that o€ ¢ (x), Again by the definition of L(S/G), sge
L(S/G). Q.E.D.

Definition 2 [3],[4]
supervisor §=(S, ¢) are said to be control-compatible,
if

Two states x, y€X of a normal

written x~vy,

do(x)N@1{y) =0 = d1(x)NPoly). (2)

and progressively control-compatible, written x ~p vy, if
(2) with x and y replaced by £(w,x) and & (w,y), respec-
tively, holds for all w& X* whenever £ (w,x) and £ (w,y)
are both defined.

Remark 2 The relation ~ and ~p are not equivalence
relations.
If x~y, then we can select some ¢rs(x) and ¢rs{y) in

(1) so that ¢ (xX)=p(y)DTuU 1(x)Ud1(y). In other

words, if x~y, the control actions of the supervisor at

x and y can be made exactly the same. Therefore if x ~p
y, then we may combine the states £(w,x) and £(w,y)
into a single state for each w without losing any control
function over the DEDS G:
the supervisor reduction technique considered in [3] and
4],

is based on the selection of a cover defined as below.

this is in fact the essence of

More specifically, the supervisor reduction in [3]

Definition 3. Let S=(S, ¢») be a normal supervisor. A
cover of S is a family C={Xi,i€I} of nonempty subsets of
X satisfying

(i) U Xi =X,
(ii) each Xi consists of control-compatible states,
(iii) &(0o,x) and €(o,y) belong
to the same X;j whenever they are both defined.

for all x,yeXi,

When a cover C={Xi} of a normal supervisor is given, a
reduced supervisor T=(T, ) is constructed by letting T=
({Xi}, T, &r.Xi0): Xio

The transition function &£r and the output

can be any member of C that
contains xg.
mapping 3 are defined in an obvious manner (see [3] or
Section 4),

of the method.

Example 1 in Section 3 illustrates the use

3. Designing A Maximal Projection

From now on, a projection P will be called L-realiza-
ble if L is (P, X¢,L{G))-contollable,
€P-1(g) will be called P-null,
mapping, denoted by I,
Note that when L is (Xy,L(G))-invariant,
and sufficient condition for L being realizable is that

Also, an event ¢
Trivially, the identity
is an L-realizable projection,

the necessary

the projection P is L-realizable.

In the observation function design problem, we assume
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that L is (Xu,L(G))-invariant, and search for a L-real-
izable projection P: X =%, U{&} with as smallest ¥, as
possible, The set of L-realizable projections can be
partially ordered by the relation < defined as follows:
Pi<P; if ¥o,1D%o,2 where Pi: X%, iU{e}, i=1,2
(we say that Pz is coaser than Py if P;<Pz). The set
does not in general have the coarsest element. However,
it has a maximal element, Before proceeding further, we

present a useful lemma, which can be easily verified,

If Py 2Pz, then for all u,veEX*,

(i) P1(u)=P1(P2(u))
(ii) if Pz(u)=P2(v), then Pj{(u)=P{(v).

Lemma 2,

In [5], a simle method of obtaining an L-realizable
The method makes use of the
transition structure of S of a supervisor S which

projection is presented.
realizes L with the identity mapping I: thus a projection
Petr:Z—XerU{€g} is defined based on S where

Zir = {0 £(0o,x)=y for some x,yEX with x=y}, (3)

and shown to be L-realizable.

easy to implement,

This method is simple and
It, however, depends heavily on the
transition structure of the supervisor: we expect a
coarser projection Pir when a reduced supervisor is used,
and could expect a maximal projection if the reduced su-
pervisor is of minimal size (i.e., has a minimal number
of states). In the following, we focus on the question of
precisely when the method results in a maximal L-realiz-

able projection.

A little thought could lead to the following (false)
statement: if the supervisor S=(S, ¢) has no progres-
sively contrcl-compatible states, then the projection Pir
based on S is maximal. Of course, if there are progres-
sively control-compatible states in S, then the super-
visor reduction technique in [3] (or [4]) can be applied
to yield a reduced supervisor with possibly smaller
number of states, which in turn may result in a coarser
the of

control-compatible states is not sufficient,

absence
in S
shown in the following example,
it

projection., However, progressively
as

for the resulting Per

being maximal {(in fact, is not necessary either: a

simple example can also be constructed to show this).

Example 1, Consider a DEDS G and a supervisor $=(S, ¢)
given below, Here S realizes L with the identity mapping

I, and S is a recognizer for L.

G: a

VRS D/\
TN A

B

Y={a,B, 7., A}

Zﬁ(a.k)
B .

1 3
a, A



State

1 -
r| A B
B 2 A
1 3 3 |a,A] -
Note that the supervisor § is (I,L)-normal. Also, S¢r=

{a,B.7.A}. Thus Per
Now it is easy to see that 0 ~p 1 and 0 ~p 2; there are

is just the identity mapping.

no control-compatible states other than these pairs.

Consider a cover C={Xi, i=0,1,2} where Xo={0,1}, X;={3}

and X2={0,2}., The reduced supervisor T=(T, ¥ ) based on C
is then
T I3 ¥
State| Yo ¥
m
B T Xo - |a, A
Xo — Xt X2
7. A 13 X Al a
7

There are no control-compatible states in T. In fact, T

is a reduced supervisor with the smallest number of
states, Now, Zir={a. B, 7}. It turnc out, however, that
Pir for this case is not maximal, Consider another cover
C'={Xi", i=0,1,2} where Xo’={0,1}, Xi'={3} and Xz’ ={(2}.
The reduced supervisor T'=(T’, ') based on C’ is

T : o |7/
State| wo'| ¥1’
Xop —» Xy ' ———» X2’
\/ Xl’ a.A i
7, A X2’ A o

a

Now %er={a, B}, giving the projection Pir': E—{a, B}
U{e}. Note that Ptr’ is strictly coarser than Pir based
on T, (end of example)

In order to obtain a maximal projection Pe¢r, we need
to require some conditions to hold for the structure of
Let S=(S, ¢)
Consider the following condition (TT)

the supervisor from which Pir is obtained,
be (I,L)-normal,
on a transition triple (x, 0,y) of S. Here, a transition
triple (x, 0,y) denotes the two states x,y<X with the

transition &( o, x)=y.
(TT) If gc€pa(x)N1(y), then

(a) 3 s,weL such that £(s,xo0)=x, &(w,x0)=y, sCc
€L(G)-L, woc<L and Pir(w)=Pir(s) 0.

If cceE¢i1(x)Nepoly), then (a) holds with y and x
replacing x and y, respectively.
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Proposition 2, Let S=(S, ¢) be a (I,L)-normal supervisor.
If for each g&Xtr,
(x, 0,y) satisfying

there exists a transition triple

(i)
(ii) (x, o,y) satisfies the condition (TT),

X is not control-compatible to y,

then the Pt¢r based on S is a maximal L-realizable

projection,

Proof Let Py be an L-realizable projection and Py >Ptr.
Suppose that P;=P¢r. Then there exists a Pj-null event
¢ such that o€ Xtr. By the definition of L¢r and the
hypothesis of the proposition, there is a transition
triple (x, o.,y) satisfying the conditions (i) and (ii).
But (i) implies that there exists oc=Xc such that
either ocE¢o(x)NP1(y) or occ€d1(x)Npol(y). By
(ii) and the condition (TT), occ€¢o(x)N¢i(y) implies
that there exist s,wEL such that soc€L(G)-L, wocEL
and Pir(w)=Pir(s)o. Using Lemma 2. Pi(w)
=Py (Per(w))=P1{Per(s))P1( ¢ )=Pi(s). Thus is not L-
realizable, contradicting the assumption. it
is impossible to have that oc& ¢ 1(x)Npo(y). Hence we
must have P1=P¢r. Thus we have shown that Pir is maximal.

Q.E.D.

we have
Py
Similarly,

Example 1 {(continued),
satisfies the hypothesis of Proposition 2, Note that T’
that Eir={a, 8}.

consider a transition triple (Xo', &,X2").

We check if the supervisor T’

Recall For «,

Recall that

is (I,L)-normai.

Xo' is not control-compatible to Xz°. We need to consider
only A€y (X' )Ny (X2’) in order to check if the
condition (TT) holds. Now two strings 7 and 7 A«

lead to Xo'and Xz‘, respectively. Note that 7 A€L and
7 Aa A€L(G)-L, Pee{rAa)=a=Pur(r)a.
Thus (Xo', a@,X2’ ) satisfies (TT). Now for B, take (Xi',
B3,%2"). It can be verified in a similar way that (TT)
holds for (Xi’, B,X2').
sis of the proposition.

Moreover,

Hence T’ satisfies the hypothe-
Thus Per’
it is not difficult to see that the supervisors § and T

(end

is maximal. Finally,
do not satisfy the hypothesis of the proposition,

of example)

it is not easy to check if the condition

all transition of S
Thus it might be worth noting that if S
is a subautomaton (see [7]) of G, then all transition
triples of S satisfy (TT). This fact of

a supervisor constructed in such a way

In general,
(TT) holds

consideration,

for triples under

is, however,
little use since
seldom satisfies the condition (i) of Proposition 2 {(note
that $ in Example 1 is a subautomaton of G). In Section
4,

L-realizable projection is maximal. Finally, we note that

we will present a simpler method to check if an

the projection Pyr based on an "efficient” supervisor

introduced in [1] need not be maximal (a simple example
can be constructed). We should also note that an
efficient supervisor may have some progressively control-

compatible states, and thus a reduced supervisor may



result from it. The reason for an efficient supervisor
not having a minimal number of states is that the finite
automata of efficient supervisors are restricted to be

recognizers for L.

Let P: X%,
Then we can con-

Assume that L is (Xu,L(G))-invariant,
U{e} be an L-realizable projection.
struct a supervisor which realizes L with P (a standard
construction procedure can be found in [2]). Now suppose
that we already have an (I,L)-normal supervisor S=(S, ¢ ),
When the

a natural

which realizes L with the identity mapping.
projection P is known to be L-realizable,
question to ask would be the following: can we devise a
which wuses the
In this

section, we concern ourselves with this question and give

simpler supervisor reduction method

(additional) infcrmation that P is L-realizable?

an answer,

We start with the following lemma which can be easily

proved,

Lemma 3. let S=(S, ¢p), S=(X, ¥, £,x%0), be an (I,L)-normal

supervisor. Assume that S has the following properties:
(a) S is a recognizer for L,
(b) if £(s,x0)=&(t,x0). then for all c&X,

so€L(CG)-L iff tg<=L(G)-L.
If £(u,x0)=x, then uel and
(i) if o€ ¢ol(x), then ugEL(G)-L,

(i1) if o€ ¢1(x), then uog €L,

There are at least two methods of construc-
First, if S
is a subautomaton of G, then (a) and (b) in Lemma 3 hold

Remark 3.
ting S which has the properties in Lemma 3.

(see [7] for details of subautomata and for a construc-
tion procedure). The second method can be found in [3].

Let S=(X, ¥, &,x0), and let P be a projection. For w
eP(L), let Xp(w)={&(s,x): P(s)=w}. Thus Xp(w)
state of the image of S undar P, Note that we may have
Xp(w)=Xp(w' ) while ww",

is a

Let S=(S, ¢) be as in Lemma 3, and let P be an
Then for all weP(L) and for

Lemma 4.
L-realizable projection.
all x,yEXp(w), x ~p y.

Proof Let x,y&Xp(w), weP(L). First, we show that x—~y.
Note from the definition of Xp(-) that there exist u,ve
X* such that £(u,x0)=x, £(v,x0)=y and P(u)=P(v)=w.
Suppose that g€ ¢o(x)Né1(y). By Lemma 3, u,veEL, ug
eL(G)-L and vo€L. Since P(u)=P(v), P is not L-real-
izable, which is a contradiction. Hence dol(x)Nepy(y)=
@. Similarly, ¢1(x)N ¢o(y)= 0. Thus we have proved that
Xy,

Note that if x,yeXp(w), then &(w',x) and &(w',y)
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belong to the same set Xp(w”), w’=wP(w'), whenever they
Thus £(w ,x)~£&(w',y) for all w', which
Q.E.D.

are defined.

shows that x ~p y.

Proposition 3, Let S be as in Lemma 3, and let P be L-

realizable, Then C={Xp(w): weP(L)} is a cover of S.

Proof Clearly, each member of C is nonempty. We check
if the conditions in Definition 3 hold for C.

If xe=X, then there is s€ ¥* such that £(s,xo)=x (S
is accessible). But s€L since S is a recognizer for L.
Thus P(s)=P(L) and therefore x belongs to a member of C.
Also,

Hence C satisfies (i).

it is clear that if xeXp(w) for some w, then x=X.
Now that (ii) holds by Lemma 3,
Let x,ysXp(w), weP(L). If
£(o.x) and £(0,y) are defined, then it is easy to see
from the definition of Xp that they belong to Xp(w'), w’
=wP( o). Q.E.D.

it remains to check (iii).

Hence (iii) holds.

Let S be as in Lemma 3, and let P be L-realizable.
that a cover of § for a
the
cover is the state space of the image of S under P. It is

Proposition 3 then shows
supervisor reduction can be immediately obtained:
thus clear that the construction of such a cover is much
in [3]. the

computational complexity is still exponential in time. We

simpler than the method used However,
should also note that the simplicity in obtaining a cover

in this case has been achieved by the additional
Following [3],
we describe below a reduced supervisor T=(T, i) based on
the cover C={Xp(w), weP(L)}.

then be presented,

knowledge of an L-realizable projection.

A useful feature of T will

Let $'=(Z,P(X), £.2z0) be the image of S under P,
Thus Z=C, and zo=Xp( & ). Also, & (w,z¢)=Xp(w) if weP(L).
Now let T=(Z, X, 77,20), where 7, is defined by

Z(P(o),z), if 3 x=z such that £( o, x)!

undefined, otherwise,

n(o,z)=
(i) if n(s.2)!,
then 7)(s,z)=&(P(s),z), and (ii) if £(s,x)! and xE€z,
then 7(s,z)!

It is easy to see that for all z&Z,

Also, we have

Lemma §.
Pir:

Then P
i.e., if o is P-null, then o is also Pir-null.

Let Ptr be the projection based on T,

Proof Let ¢ be P-null. For each z€Z, if 7n(c¢,z)! then

7(0,2)=¢(P(0),z)=¢{(€&,2)=2z. Thus there is no tran-

sition triple {zi, 6,22) of T such that z;%z2., Hence o
& ¥ ¢r, so that gis Per-null, Q.E.D.
Define ¥=(vo, ¥1) by

Yo(z) = Uxez o(x), ¥1(2) = Uxez oo(x).

Then T=(T, %) is a reduced supervisor based on C., Indeed,

Theorem 1 [3] L(T/G)=L(S/G) and T is complete,



Moreover, the supervisor T so constructed has the

following useful properties.

(i) T is (I,L)~normal.
(ii) Each transition triple (z;, o,z2),
z| %2z, of T satisfies (TT).

Proposition 4,

Proof (i) Let z&Z. By Lemma 4, ¢o(x)N1(y)=0 if x,y
€z, It follows that $o(z)N¥1(z)= 8. Now let
Y20 = {0€ X! 3 u€L such that 7(u,20)=z and
uo €L(G)-L}.

We are to show that ¥o(z)=Zz0. Suppose that o< Po(z).
Then there is x&z such that g& ¢o(x). Let z=Xp(w).
Then there also exists tE€XT* such that &£(t,xo)=x and
P(t)=w. By Lemma 3, to<=L(G)-L. Note that 7{(t,zp)=
& (w,z0)=Xp(w)=2z. Hence g & Xz9. Suppose now o € X zo.
Then there exists u€L such that 7(u,20)=z and uo €L(G)
-L. Note that if we let x=£€{(u,%0), then g=¢o{x) and
x& £ (P(u),2z9)=7(u,2z0)=2. By the definition of ¥o. &

& Po(z). Hence we have shown that ¥o(z)=%z0. Similar-
ly, ¥1i(z) is the set as defined in Definition 1.

(ii) Consider a transition triple (21, o,22), z)3zz,
of T. Clearly, o€ Xt where Xir is the set defined
for T as in (3). By Lemma 5, ¢ is not P-null. Suppose
now that gc€ Yol(z1)NYi(zz). By the definition of ¥,
there exist x€z;, yEz; such that gc€¢o(x)Ni(y).
Let z1=Xp(w) (=& (w,z0)), Then z2=7(0,21)=¢ (P{c),21)
=¢(o.z21)=&(wvo,20)=Xp(wo ). Thus there exist s, t&¥%*
such that £(s,xg)=x, &£(t,x0}=y, P(s)=w and P{t)=wo.
By Lemma 3, we have that s,t€l, soc¢€L(G)-L and tgce
L. Note that, using Lemma 5 and Lemma 2, we have P¢r(t)=
Ptr(P(t))=Ptr (w0 )=Ptr (%) 0=Pir(P(s)) o=Per(s) 0.
7 (s,20)=¢ (P(s),z0)=Xp(w)=21. 7(t,20)=22.
Hence we have shown that if oce=®ol(z)NYi1(z2), then
there exist s,t€L such that 7(s,zo)=z1, 7n(t,z0)=z2,
sdc€L(G)-L, toec€L and Per(t)=Pir(s)o.

Similary, if gc€=¥i1{z1)Nwo(z2), the above conclu-

Also,

Similarly,

sion holds with zz and z; replacing z; and z2, repective-

ly. Therefore (z|, 0,z2) satisfies (TT). Q.E.D.
By Lemma 6 and Proposition 2, the following result is
immediate,

Corollary 1, Let X+¢r be the set defined for T as in (3).
If for each &€ Xtr
(21, 0,22) of T such that z; is not control-compatible to

there exists a transition triple

22, then P is maximal.

Therefore we have a fairly simple means of checking

if an L-realizable projection P is maximal.

Recall that P:Z—{a, B}U{e} is
We check if P is maximal.

Example 1 (continued)
an L-realizable projection,

Note that S is a subautomaton of G so that § has the

properties in Lemma 3. Now it is easy to see that
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{Xp(w), we=P(L)}={{0,1}, {2}, {(3}}.
visor based on the cover {Xp(w),wsP(L)} is nothing but

Thus the reduced super-

T'=(T",%"). Note that there are no control-compatible
states in T°. By Corollary 1, we conclude that P is
paximal. (end of example)

5, Conclusion

The sufficiency condition (Section 3) for maximality
of an L-realizable projection Ptr based on a supervisor
S=(S, ¢ ) become checkable when S has special structural
properties. Since such an S can be easily constructed

(with polynomial time complexity [71), the result is
expected to be useful in the observation function design
problem, The result (Proposition 3) that the states of
the image of S under an L-realizable projection P form a
cover for a supervisor reduction may find its use only in
restricted cases, since such P is seldom available when
supervisor reduction problem is considered. Nevertheless,
it gives an insight into the relationship between super-

visor reduction and observation function design problems,
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