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Abstract

To solve the nonlinear system problens,

many methods have been proposed. Generally those

wethods however need long processing time

because of their complicated algorithms. On the

other hand, some simple linearization methods

also have been studied. In this paper, a new

linearization method using cubic ‘splines{1] is
proposed. The approximated linear system obtain-

ed by this method we can apply the conventional

simple linear system theories such as Kalman
filter{2,3] for the estimation problem.
1. Introduction
In the case of the extended Kalman filter,

an approximated linear system of the first order

approximation by Taylor expansion is used in-

stead of wusing original nonlinear system. In

this paper, the new way to convert the nonlinear

systems into approximated linear systems is

described. For the one dimensional nonlinear

equation, aproximate it using cubic spline, take
the square

and cube of the original nonlinear

equation, themusing cubic

third

approximate splines

too, treat the first, second and order
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terms as new variables, and the approximated

three dimensional linear equation is obtained.

For the two dimensional nonlinear system, ap-

proximated fifteen dimensional linear equaticn

is derived similarly.

The nonlinear observer and filter algo-

rithms are obtained by adapting conventional

linear algorithms to these approximated linear

systems.

2. Formal linearization method via cubic

splines for one dimensional systems

Consider the following nonlinear system:

Xesr1= £ (XD (@D)]
(X € R, Xe=X(tk))
where X, is a state variable and f (+) is any
nonlinear function.
Lzt ® be the domain of state variable X«.
Set the interval [ &,, £€.) such that
e [&o, €0) CD ¢))

and divide this interval into n subintervals,

so that there will be n-1 points:



E1,&82,- - €01 )

(& o<E <€ 24 . <Ens<E0).

Next approximate equation(1) by using cubic
spline on the interval [ £, &€.) .
Thus we have the form of the approximated
cubic polynomial:
Ixsi=asot a et a2Xu?2+ a3k’ 4)
XkE [61, €1+1)
where a:o0,a:1,a:12 and a3 are coefficients
of the cubic spline.
Then square Soth sides of equation(l)
Yuer?= £ 2 (X)) =g (Xk) (5)
and again approximate g (X.) by using cubic
spline.
Setting interval for the domain of X,
€ [§o, §o) CD (6

and dividing it into p subintervals, there will

be p-1 points:

.82 0,80 m
(€ o< 1<E o< <Ew1<E ).
And then approximate g (Xx) by using cubic
spline
Xk+12=b 5o+ b y1Xe+ b j2Xe?+ b 55X ? (¢:))

e (&, €541)
Furthermore take the cube of equation(l):
X“13= f 3(XK)E h (Xk) (9)

then approximate h (X«) using cubic spline.
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Similarly setting the interval

X« € [#o. /‘q) cd (10)

and dividing this interval into q subintervals,

there will be g-1 points:

By M2seeey Manoy (11)
Caod e 1< o€ g peq)
then equation(9) results to
Yke132Cuot CurXi+ Cuzle2+ Cmski? (12)

Xk € [ #n, Loey)

Let X, Xk2,Xc3 be ¢ 1(Xe), ¢ 2(Xk), ¢ 3(Xx)

respectively, and introduce ®«(Xx) as

()= [ ¢ (X)) ¢ 2(Xe) #3(X)] 7. (13)
Coabining equations (4),(3) and (12), we
have
Qusr = A D+ B %) (14)
Hheré
A(Xx)= ayy a1, ais
bsyi by by,
Cmi Cm2 Cus
B)=1[ais bso CmolT™.
Equation(14) is the approximated linear

form of equation(l).

3. Formal linearization method via bicubic

splines for two dimensional system

Consider the following nonlinear system:



Xeer= £ (Xu, Yi) (15)
Yes1= 8 (Xx,Yi) (18)
K, Ye € R, K= X(10), Y = Y(ti))
where X« and Y. are state variables, £ (-) and
g (-) are nonlinear functions.
Let & be the domain of state variables X«
and Y« in the XY-plane. Consider the appropreate

region:
[€o, €u) X [0, §2) €. 17

Divide this region into mXn meshes with mesh
points:

(&€:,6,) i=0,t1,...,m, j=0,1,...,n.  (18)
Approximate equation(15) by using bicubic spline
function{4].

For the point:

K, Ye) € [ &4, £1e0) X [E 5, §5v1),

the approximated equation(15) is represented as

3 3 L3 '
X 1= 2 2 a oKtV (19)
Ps0 q=

[ Q

1 PRI N . N
where a, are coefficients of bicubic spline.

Introducing ¢ «:(X«,Yi) as
bro = 1 P = Yi bz = Yi?
Prs = Yi3 P re = Xi Pus = XeVu
Pre = Xu¥u? @7 = X2 P = Xc®

Pro = XYo@ rio= Xe?¥i?
$ 127 X3 $ 13> Xe3Y¥y
# 157 XY 3,

FIRREED M S
P ria= KV ?

equation(18) can be rewritten as

3 3 13
Pr+1 4 =Pz z ASaPx apta. (20)

=0 =0
Not only equation(15), also approximate the

followng equations by using bicubic splines.

@ x4 4y+q=f(xk’Yk)P' g(xk-Yk)q (21)
(P=0,1,2,3, ¢=0,1,2,3)

Introduce @ «(Xx,Yy) as

¢ w1 (X, Yi)
@ x2(Xi, Vi)
P (Xe,Yu) = Lo (22)

.

# s (Xe,Ye)

Using (22), (21) can be represented as
Qi.t = A Y)®x+ B X, Ye) "(23)
where the elements of A and B are coefficients
of bicubic splines. Equation(23) is the approxi-

mated fifteen dimensional linear form of equa-

tions(15) and (16).

4, Nonlinear filter for one dimensional systeam

The preceding result can be used in
deriving a nonlinear filter algorithm.
Consider the following one dimensional sys-

tem and observation equations

Xev1= F (X)) 24)
YK =G(X.,.)+Vk (25)

where X, is a state variable, Y« is an obser-
vation value and Vi« is Gaussian random noise

such that

EVi=mx, E(Vi-mx)2=wy, (26)

and both F(.), G(-) are nonlinear functions.
Linearize equation(24) using the wethod
described in section 2. Similarly approximate
equation(23) using cubic spline.
Since & is the domain of X., set the

interval



Ie€ [ vo, V) CD @n
and divide this interval into r subintervals
such that there will be r-1 points

Vi,V 2,00.5Vr-1 (28)

(VolV 1<V 2¢ ..V 1<V ).

Using the spline function on G (Xx) gives

the following cubic polynoaial

G(X )= dno+ dn1fk+ dn2Xi?+ dasXe? (29)
Xe€ [ Vo, Vaed) .
Consequently, -equations(24) and (25) are
transformed into the following linear forms.
Prii= AX)P+ BXe) 30)
Ye = C(Xx)®x+ D Xe)+ Vi 31
where
AX)=[ a1 a1z ais
by1 bis: bis
Cm1 Cnm2 CmSJ
B(Xe)={laio bio Cmo]:r
CX)= [da1 dnz das]
D({X)= dno
Equations (30) and (31) are linear with
respect to & to which conventional linear

filter theory can be applied.

< Nonlinear filter algorithm>
TzAD . ,+B
Mx=AP (- AT
Pu=M =My CT (w+tCMCT) ~1C M
D=3 +PxCTwi ! (Y- C & - D-ny)
Tzl 100 1D,
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given initial values 80, Po

5. Nonlinear observer for two dimensional system

The preceding result in section 3 can be
used in deriving a nonlinear observer algoritha.
Consider the following two dimensional sys-

tem and observation equations

Xx+1= F (e, Ye) (32)
Yer1= G X, Vi) [&X))
Ir =H&Y (34)
( X, ¥, 2k € R,
e = X)) Ve = Y (1), Ze = 2(1k))
where X.,Yx« are state variables, Zx is an obser
-vation value, and F(:),G(+),H(+) are non-

linear functions.

Linearize equations(32) and (33) by using

the method described in section 3. Similarly

approximate equation(24) by using bicubic spline

aiP)q¢k 4p+a- (35)

3
H Xk, ,¥)= =

P=Q

3
Z
a=0

Equations(32),(33) and (34) are transformed

into the following linear foras

Pri1= AWK, Y )Du+ B (Xk,¥x) (36)

Ik = CXe,Ye)®+ DXk, Yu). amn
Equations (36) and (37) are linear with
respect to & to which conventional linear

observer theory can be applied.
< Nonlinear observer algorithm>
B=A K-, Te- ) B w1+ B Riemr, Vo)
+K [Zx- € (Re- 1. Y- 4
A1, T8 o 1#B Remr, Te- 0}
=D Re-1,¥e-1)]



X=[000100000000000 }]B,
Y=[10000000000000°0 JB,

oy . .
where &, is given and K is an appropriate

constant matrix.

6. Numerical experiments

The wvalidity of this proposed method

may be tested using numerical experiments.

6.1 Formal linearization

Consider the following nonlinear difference

equation

Xe+1=sinXk. (38)

Let the domain of X« be [0,27x ), the number
of subintervals n=p=q=4, and the length of each
subinterval be equal. Figure 1| shows the graph
of sin X using the spline function approximation.
For comparison, the first order approximation by

Taylor expansion is likewise shown.

0.8 4

0.4

0.0

sin X

04t
0.8t

Fig.1 Approximation of sin X
,True value

——————— ,By cubic spline

—-—,By Taylor expansion

Figure 2 shows the trajectories of Xy with
initial value Xo=1.2, domain X« € [0,2), n=p=q=4

and with equal subinterval lengths.

0.6

5 10 15 20 25 30
Fig.2 Trajectories of Xy
,True value

______ ,By cubic spline
—-—,By Taylor expansion

6.2 Nonlinear filter

In order to test the validity of the
proposed nonlinear filter algorithm, consider

the following systea.

Xxs1= logXk?242
XK+Vk, X1=1.5

Yk

where the observation noise Vi is a Gaussian
noise such that N(V«;0.3,0.01). The setting
interval is X« ¢ [1, 5) € ®, n=5,p=10,q=15 with

equal subinterval lengths. The initial values

are:
A\
d, = [1.0 1.0 1.0]7
Py = 16.100 0.000 0.000
0.000 0.010 0.000
0.0060 0.000 0.001
Figure 3 shows the result of the state
estimation.
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k
Fig.3 Estimation of Xy
,True value
------- ,By proposed filter
—-—,By extended Kalman filter
——e— ,Observation
6.3. Nonlinear cbserver
In order to test the validity of the

proposed nonlinear observer algorithm, consider

the following system.

Xeer = sin(XkYk) Xo=0.3
Y1 = €COS(Xyt¥y) Yo=0.5
Lk = 4Xx+Yx
The setting interval is X«,Ye € [0, 1),
and the mesh size is 0.2. The initial values

are fo=0.5 and ?o=0.3. Figures 4 and 5 show the

result of the state estimation.

P ——

18 20

12

14 16

Fig.4 Estimation of Xy
,True value
,By proposed observer
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0 2 4 6 8 20

Fig.5 Estimation of Yy
,True value
,By proposed observer

7. Conclusion

The approximation method by cubic spline

was applied to the nonlinear system exemplified

in the one or two dimensional diffecence equ-

ation. Based on this method, a new nonlinear

filter and observer algorithms were derived.

Finally the linearization method and the non-

linear filter and observer algorithms were

validated through nuserical experiments.
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