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Observers for Nonautonomous Discrete-time
Nonlinear Systems

KWANGHEE NAM{ AND WONCHANG LEE}

Abstract

‘We study the observer design problem for nonautonomous
discrete-time nonlinear systems. We investigate the
structure of nonautonomous discrete-time systems which
are state equivalent to the nonlinear observer form and
characterize their class. Necessary and sufficient condi-
tions for the existence of an input independent (local) dif-
feomorphism are derived which transforms multi-input,
multi-output nonlinear systems into the nonlinear ob-
server form.

1. Introduction

The design of a nonlinear observer with lineariz-
able error dynamics can be viewed as a dual concept to
the feedback linearization problem. A nonlinear observer
form can be defined as a canonical structure for which an
observer can be constructed with linear error dynamics.
If a system can be transformed into the nonlinear ob-
server form via a coordinate change, then one can recon-
struct the state of the system through the inverse coordi-
nate transformation of the state of an observer. For the
continuous-time models Krener and Isidorifl] obtained
a necessary and sufficient condition for a single-output
system to be state equivalent to the nonlinear observer
form, and the result was extended to the multi-output
systems by Krener and Respondek(2] and Xia and Gao[6).
Marino[4] obtained a necessary and sufficient condition
for the existence of an input independent diffeomorphism
which transforms a single-output system into the nonlin-

ear observer form.
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The problem of designing nonlinear observers for au-
tonomous discrete-time systems was solved in [3]. In this
paper we characterize the class of systems which are state
equivalent to the nonlinear observer form and derive nec-
essary and sufficient conditions for a discrete-time sys-
tem to be state equivalent to the nonlinear observer form
in the multi-input, multi-output case, as well as in the
multi-input, single-output case, using the techniques in

5]
2. Definition and Preliminaries

Let M be a smooth n-dimensional manifold. By
smooth, we mean infinite differentiability. We denote by
R the real line. Since the problems addressed in this
paper are local in nature, we identify manifold M with
an open neighborhood of the origin in R". Let T, M de-
note a tangent space at x € M. Given X(t,z) € T M
for each t € R, we denote by ®(po) the solution of
dd/dt = X(t,®), ®(te) = po.

Definition. Let U;,U, be open subsets of a smooth
manifold M and o : Uy — U, be a local homeomorphism
of class at least C. For vector field X over an open set V
of M, we define Ad,X to be a vector field on o(Uy N V)
such that

AdsX(p) = Do |o-15) X(07'(p)),

where Do implies the Jacobian of o.

Given F : M - M, h: M — R™, hoF denotes a
composite function h(F(z)). We also denote by F™ the
n

. . . s p—
n-times composite function Fo..-oF. We denote by ¢;
a unit vector of R™ whose 7-th component is the unity.

The j-the component of a vector z is defined by z;.

We call the following canonical structure a discrete-



time nonlinear observer form

z(k +1) = Az(k) + v(y(k)), (1)
y(k) = cz(k), (2)
where
(11} 00
10 0 0
A=1(0 1 00 , c¢=[0---01]
00 - 10

and v : R — R" is a smooth function. If a single-output

autonomous discrete-time nonlinear system
z(k +1) = F(z(k)), (3)
y(k) = h(z(k)) (4)

is transformed into a nonlinear observer form (1),(2) by
a (local) diffeomorphism z = T(z), then we say that the
system (3),(4) is (locally) state equivalent to the system
(1),(2) and vice versa. We can construct an asymptotic

observer for the system (1),(2) in such a way that
2(k +1) = A2(k) + I(c2(k) — y(F)) + v(y(F)).  (5)

Then the state observation error e = Z— z satisfies the er-
ror equation e(k+1) = (A+Ic)e(k). Thus, if all the eigen-
values of A + lc lie inside the unit circle of the complex
plane T, the state observation error e; converges asymp-
totically to zero as k — oo. Then, (k) = T™'(4(k))
converges to z(k).

We define the observability matrix O and a vector
field g as follows:
3h
aghar) °
O@=| 7 |@ ¢=)=07"@)

B!hoaf."‘“! 1
z

Then, a necessary and sufficient condition for the system
(1),(2) to be state equivalent to the nonlinear observer

form (3),(4) is given in the following theorem.

Theorem 1 [3]. There exists a local diffeomorphism
which transforms the system (1),(2) into the nonlinear
observer form (3),(4) if and only if for all * in an open
neighborhood of a fixed point z, of F,
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(i) O(z) is full-rank,

(i) [Adig, Adkg] =0, 0<ij<n-1.

Nonlinear observer form for a multi-input, single-

output discrete-time system is given by

P
2(k +1) = Az(k) + a(y(k) + Y _ Biy(k)ui(k), (6)

$=1

y(k) = ez(k), (™

where a : R — R" and #; : R — R" are smooth func-
tions. Similarly to the autonomous case, we can construct

an observer such that
2(k + 1) = A2(k) + I(c2(k) — y(k)) + a(y(k))

P
+ 3 BuyR)ui(k).

i=1
Repeating the same argument, if all the eigenvalues of
A+ lc lie inside the unit circle of L, the state observation
error e(k) = 2(k) — z(k) converges asymptotically to zero

as k — oo.

3. A Discrete-time System Model

Consider a multi-input, single-output system
z(k + 1) = H(z(k),u(k)), (8)
y(k) = h(z(k)), (9)

where H : M x R? - M, h : M — R are smooth
functions and u = [uy,--- ,u,,]T is the input vector. We
assume that (z.,0) is a fixed point of the map H, i.e.,
H(z.,0) =z, and that h(z.) = 0.

To investigate the structure of the system (6), we
define its autonomous part by the map % : R* — R"

1(zn)
F41 + (12(2,,)

¥(z) = Az + alza) =

Zp-1+ an(zn)
Since discrete dynamics inherits its structure from the
continuous-time system by sampling, it is more reason-
able to assume that the autonomous part of the system
(6), i.e., ¢ is a local diffeomorphism. To meet such a
requirement, we need to assume that

Oay

6Zn zn=0

#0. (10)



For each u we also define a diffeomorphism ¢, :
R"” - R" by

eull) =6+ Y Billr)ui,

=1
where §; : R — R™, 5;(&1) = Bica;'(&1). Then, we can
express the system (6) equivalently as a composition of

the two diffeomorphisms:
Z(k + 1) = (pu(k)o‘lﬁ(z(k)). (11)

Suppose that the system (8),(9) is state equivalent to the
nonlinear observer form (6),(7) in a neighborhood U, of
z. and that z = T(z) is the coordinate transformation
map which transforms (8),(9) into (6),(7). Transforming
back the equivalent expression (11) of the system (6) via

a coordinate change = = T~!(z), we obtain

o(k +1) = T (pumyop(2(k))) = Gumyod(2(k)), (12)

where Gyxy = T opy(kyoT and % = T~ lotpoT. There-
fore, comparing (12) with (8) we obtain

H(z(k), u(k)) = Guiryod(z(k)).

Note that @o(z(k)) = =z(k) since po(€) = £. Hence,

P(a(k)) = H(z(k),0) and G, x)(z(k)) =H($ 7 (2(k)), u(k)).

Summarizing this, we obtain the following lemma.

Lemma 1. If the multi-input, single-output system
(8),(9) is state equivalent to the nonlinear observer form
(6),(7) satisfying (10), then (8) can be represented by the

following canonical structure:
z(k+ 1) = u(yoF(z(k)),

where F : M — M, F(z) = H(z,0) is a diffeomorphism
on M, ¢y : M — M, ¢y(z) = H(F~!(z),u) is a diffeo-
morphism on M for each u € R?, and ¢o(z) = z.

Remark: If a system is locally state equivalent to the
nonlinear observer form, all statement in Lemma 1 be-
comes local argument.

4. Observers for Single-output Systems

Lemma 1 states that if a multi-input, single-output
system is state equivalent to the nonlinear observer form,
then it can be represented as a composition of the two
diffeomorphisms, ¢, and F. Thus, we consider the fol-
lowing canonical form for the characterization of state

équivalence to the nonlinear observer form:
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z(k +1) = $uwyoF(z(k)), (13)

y(k) = h(=(k)). (14)

Here, we assume F(z.) = z. and let U,, be an open
neighborhood of z.. We further assume that F' : U, —
F(U.,) is a local diffeomorphism, and that h: U;, = R
is smooth and h(z.) = 0. We also assume that ¢, :
U., = ¢u(U;.) is a local diffeomorphism for each u in an
open neighborhood of 0 € R”.

Suppose that a local diffeomorphism T from U,
onto its image V,(= T(U.,)) transforms the system
(13),(14) into the nonlinear observer form (6),(7). Let

Ge(k), u(k) = As(k) + a(y(k) + 7oy Blu(k)uilk)
and X = T}, Then, since z(k + 1) = X(z(k + 1)), we
obtain ]

bucryoF(a(k)) = X(a(k +1)). 15)

It follows from the structure of G that -g% = €41, 1<
j € n — 1. Differentiating the both sides of (15) with

respect to zj, we obtain

Odu(r) oF
3z |F(z(r)) O z(k)azJ( z(k)) = | (k+1)3z ( (k), u(k))
=3 +1(z(k+1))’ 1<j<n-1, (16)
Oduir) oF
Tz IF((r)) Oz :(k)azn( (k) = 9z |z(k+1)6z (z(k), u(k)).

(17)

We can rewrite the left hand side of (16) as

LA0) aF OX , .,
Oz 1F(z(k) Or IF -oF(x(k)) 0z; B, (XTI F 1o F(z(k))
_9dux) aF 9 ./t o
e lF—loF(z(k){ygz— (¥~ oF~ oF (a(k)))

5¢-(k)
|m(m dFAdx5;j (F(=(k)))

a
=Ad¢‘“)AdFAdxa—zj(z(k + 1))

Therefore, 2% B bemg independent of u implies that
Ad¢u(;‘)AdpAdxa—zj is independent of u. Also note that "
the necessary and sufficient condition for Ady, * AdpAdy

3%,- to be independent of u is



o
Ady,,, AdpAdx5—(2(k+1)) = AdpAdxi(z(kH)),
9z; 0z;
(18)
Letting u(k) = 0, we can check the identity of (18). Then,
(18)isequal tofor 1 < j<n-—-1

oxX ox
Ad¢u(h)AdF'5;;(z(k + 1)) = Adpgz:(z(k + 1)) (19)

Therefore, from (16),(17), we obtain

Adp S (:(k + 1) = G(a(k + D),
1< j <n-1, (20)
Adpg(alk+ 1) = 5o | SE (), u() (21)

Hence, we obtain

ad _adl 9%
2ok + 1) = A Gk + 1),

1<j<n-1, (22)

ox

Bz 2(k+1) 62 (z(k),u(k)) = AdF3~ (2(k +1)).(23)

On the basis of the above result we obtain the following
proposition.
Proposition 1. There exists a local diffeomorphism
which transforms the system (13),(14) into the nonlin-
ear observer form (6),(7) satisfying (10) if and only if for
all (u,z) in an open neighborhood of (0,z.) € R? x M
(i) O(z) is full-rank,
(ii) [ Adpg, Adkg]
(iii) Adp, Adhg(z) =
where g(z) = O~

=05 05’1]5”"1,
Ad}g(z), 1<j<n-1,

l(z)[(]’ -, 0, I]T'

PROOF: (Necessity) Since h(z(k)) = hoeX(z(k)) = cz(k),

Oh
S (XGW),

- %(z(k)) >
a i—1
=< a_:(x(z(k))), Ady Z—:(z(k)) >= bjn,

where §;,, is the Kronecker delta. Thus, we obtain

0 0 1
O(z(k» (z(k))— S )

0o . X :

1 x - x

where x denotes an arbitrary function. The nonsingu-
larity of %—’f and the right hand side of (24) implies that

O(z) is full-rank. Therefore, we obtain
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22 (k) = 07 a0, 0,11

which can be ldentlﬁed with g(z(k)). Since { g;‘: Adpdt 55
-, AdR” ~1 af , ie., {g, Adrg,--
I
8z2
dition (%i). It follows directly from (19),(22) that condi-

tion (iii) holds.

., Ad¥ '¢} are push-

forwa.rded vectors of {6—%, -, %}, we obtain con-

(Sufficiency) We define a map X' from an open neighbor-
hood V; of 0 € R" onto its image in M by
BRI (g,).

X(Z): glo@AzdF'qo“'

(25)
Since the vector fields g, Adrg, - -, Ad'}_lg commute, we
obtain

BX n—1

55 (z(k) = [ 9,AdFg,- -, AdF g [(X(2(F))). (26)
From the definition of g and (26) we obtain (24). Since
O(z) is full-rank, %’; is nonsingular in V. Therefore,
X is a local diffeomorphism. Choosing T = X~! as a
coordinate transformation map, we obtain

Z(k + 1) = X_lo¢u(k)oXoX_1

oFoX(z(k)).  (27)

Utilizing (26) we obtain that

X ToFeX)

9z AdF g ]

(2) ={97Ad1’ga (F(z))

oF n—
—é;(x)[gaAnga7AdF lg ](z)

=[ gaAngy"'vAd;'_lg ](—;(:))

This implies that b—%(X"%FoX)(z) =¢j4q for 1 <5 <
n—1. Thus, we deduce that X’ "1 FoX is a linear function
of z;,-- Hence, we obtain for some o : R — R"

that

‘9 Zn—1-

X7 LoFoX(2) = Az + a(za). (28)

On the other hand, notice that

A(X 1 ogyolX)

Bz (z)‘_’[gvAng,"'

6¢..

n-1 -1
AT 9 ] 4o

(1’)[ gvAng7 t vAd’;?—lg ](I)



From condition (it) we obtain 5—8‘7(/\’_10¢.0X)(2‘) =¢;
for 2 < j € n. This implies that

P
X lopyoX(2) = z + Z Bi(z1)ui. (29)
i=1

Therefore, we can conclude from (27)-(29) that

)4
2(k +1) = Az(k) + a(za(k)) + Y Bilzn(k))us(k),

=1

where Bi(zn(k)) = fioa1(za(k)). Further, we obtain
y(k) = cz(k), since '

0tX) (. (k) =<

0z;

oh i

22(a(k), A o(a(R) >= by
|

Remark: Condition (3ii) implies that the vector field

Ad}g is invariant with respect to the Ady, operation for
1 € j € n~1, whose parallel condition in the continuous-
time case is the condition #) of Theorem 3.1 of [4]. If
manifold M is isomorphic to R" and the maps ¢, F and
X are global diffeomorphisms, then the system (13),(14)
is globally state equivalent to the system (6),(7).
Corollary 1. There exists a local diffeomorphism which
transforms the system (8),(9) into the nonlinear observer
form (6),(7) satisfying (10) if and only if for all (u,z) in
an open neighborhood of (0,z.) € R? x M
(i) O(z) is full-rank,

(i) [Adkg, Adkg]=0, 0<ij<n-1,
(iii) Adg, Adjg(z) = Adpg(z), 1<j<n-1,

where g(z) = O~(2)[0,---,0,1]T, F(z) = H(z,0),
and ¢, (z) = H(F~1(z),u).
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