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Abstract

In this note, we consider a robust linear shift-invariant
feedback compensator design for discrete-time multivari-
able systems which have both matched and mismatched
uncertainties. In order to attack the problem of designing
robust compensators guaranteeing uniform ultimate bound-
edness of every closed-loop system response within a
neighborhood of the zero state based solely on the
knowledge of the upper norm-bounds of uncertainties, we
use an approach which is effective on studying augmented
feedback control systems with both mismatched and
matched uncertainties. We draw some robust stability con-
ditions using the approach and give an example.

1. INTRODUCTION

Over the years, the problem of designing a robust
controller which guarantees the desired performance and
stability of continuous-time multivariable systems whose
mathematical models are subject to uncertainties has been
occupied the attention of system theorists. Many research-
ers have attacked the problem from the deterministic point
of view by using a Lyapunov approach. The salient
featurc of their approaches is the fact that it is a deter-
ministic treatment of uncertainties in that a certain deter-
ministic performance is required in the presence of uncer-
tain information.[1-4}]

Recently, Corless and Manela [5], and Magana and
Zak [6] have extended the results for continuous-time sys-
tems to apply to discrete-time uncertain dynamical systems
described by difference equations.

But both results are based on the assumption that
uncertainties satisfy the so-called "matching conditions”
and the assumption that the actual system state should be
available directly. In addition, in their results if the nomi-
nal systems of dynamic systems are not stable then a
preliminary stabilization of nominal systems should be per-
formed. In most practical situations, dynamic systems may
have uncertainties which do not satisfy matching conditions
and the actual system state is not available directly.

In this note, taking account of these problems, we
propose a robust linear shift-invariant feedback compensa-
tor design methodology for discrete-time multivariable sys-
tems which have both mismatched and matched uncertain-
ties. We use an approach, which is more effective than the
Lyapunov approach in studying augmented feedback con-
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trol systems with both mismatched and matched uncertain-
ties, to draw some conditions for uniform boundedness and
uniform ultimate boundedness of the closed-loop system
and our analysis is restricted to uncertain multivariable sys-
tems where the nominal systems are linear. According to
the proposed methodology one does not have to stabilize
the nominal system preliminarily. To guarantee uniform
ultimate boundedness of all possible system responses
within a neighborhood of the zero state one has only to
locate the nominal closed-loop poles inside the disc in the
z—plane the radius of which is determined by norm-bounds
on the uncertainties and/or norms involving the parameter
of both compensator and system model. Therefore, the
control system design can be well performed through
eigenstructure assignment.

Notations : If x is a real vector, then (lx]|, is the norm
defined by (x|, = {3 Ix 17317 where x; denotes the element
of the vector x and p =1,2,e. If A is a matrix, then |||},
is the induced matrix norm cormresponding to the vector
norm. Details on the norms may be found in [7].

I1. PROBLEM STATEMENT AND BACKGROUND RESULTS
Let the actual plant to be controlled be represented by
the following difference equations with x(0) = x,

x(k+1) = Ax (k) + Bu (k) + ny(k x (k),u(k))

() = Cx(k) + Mk x (k) M

where ke Z, Z is the set of nonnegative integers, and
x(k)eR", u(k)eR™, y(k)eR" are the state, input, and out-
put respectively. A, B, and C are constant real matrices
with appropriate dimensions and #,(k.x(k).u)) and
nytk.x(k)) are uncertainties with the following known
upper norm-bounds:

Iy G x (k) oD, < By + Balbx (I, + Bl (I,

Motk x DM, < B+ Palix KN,

where B;, i=1,...,5 are nonnegative constants.

Without loss of generality, we assume that the triple
(A,B,C) is controllable and observable. Suppose that only
the output vector y is directly available. Let the control
system be the following output feedback compensator:

vik+1) = Koy (k) + Kppv (k) v(O)=vy 3)

utk) =Ky ytk)+ Kvk) “)



where Ky, K3, K4, and Ky, have appropriate dimensions,
and (3) is a dynamic compensator of order s; 0Ss<n. The
extreme case s=0 represents static gain output feedback.

Thus, our design problem is formulated as choosing
the parameters Ky;, K3, K2, and Ky of (3) and (4) such
that all the closed-loop system responses of (1), (3) and (4)
satisfy uniform ultimate boundedness within a neighbor-
hood of the zero state.

Now, we will state two technical lemmas which will
be used in the next section and the proofs of the lemmas
are omitted because of the space limitations.

Lemma 1: For the dynamical system

xk+1) = f e x k) x(0) = xq

Suppose that for some finite constants a >0, 1>r 20, 6>C
the following inequality holds:

Ik (ol < ar*lixoll, +8(1—r%), Yk 20 (5)

Then the following properties hold:

1) Uniform Boundedness: Given any S « (0,e0), there exists
a d(S)<eo such that |xgll, S implies |lx(k)ll, £d(S), Yk 20
2) Uniform Ultimate Boundedness: Given any 3> and any
S e[0,0), there is a T(3,S)e[000) such that {ll,<S
implies Ik (k)ll, <8, ¥k 2T(3.S)

3) Uniform Stability: Given any 8>3, there is a D(8)>0
such that |x,ll, <D (8) implies Illx (k)ll, <38, ¥k 20

Lemma 2: Suppose a funciion Fk,tx):ZxZXR - R
satisfies

x1Sxy o Fhkax)sFk.txy) 6)

Let x (k) be the solution to the inequality
k-1
x(k) € xolk)+ L F (kX (T) @
=0
Then the solution w (k) of
k-1
wk) = xok)+ S F (k,Tw (D) ®
1=0

satisfies

x(k) <w(k), Yk20

IT1. RoBUST OUTPUT COMPENSATOR CONTROL
Let x7 (k) = [xT (k) vT(k)], then the closed-loop sys-
tem is given by

Z(k+1) = AT (k) + Mk X (k).u (k)

X0
. 0 = 9
Y k) = CEG) + otk F (k) ©=1y®

where

_ A0 Bo||KuKp||co
A=lo0,| Tlor||Knknl|01,

A +BK|C BK, _

= C=[CO 16
KyC Kz (c 0 (1v)

i MGk x (k). () + BK 1150k x (6))
Mtk XEED = | gk x k)

Ttk X (k)) = Motk X (k). an

Associated with (9) we get an approximate closed-loop
feedback system as follows:

4 = A% x
X(k+1) :_Ax(k) 20) = 0 . 12)
yk) = CIk) Vo

Let us define the transition matrix @(k) of (12) then it is
clear that

PN, = 1A, < IANE k=01, - (13)

Let
P1=B1 + Ba(IBK 11l + 1K 4lli)

P2 = P2 + Ba(IBK 1illyp + 1K 33llip )+ Bsli(K 11C K 121l

Now, we are ready to present a theorem which can be
used for establishing a robust output feedback compensator
design methodology.

Theorem 1: Consider (9). If we choose the control parame-
ters of (3) and (4) such that the following inequality is
satisfied:

WAl +pa < 1, (14)

then the following properties hold:
1) Uniform Boundedness: Given any S € [0,e), there exists
a d(§)<ee such that [[Xll, £ implies IX(k)ll, <d(S), Vk 20
2) Uniform Ultimate Boundedness: Given any 8 > 8, =
p1/(1-|A)l;,,—p2) and any S e [0.), there is a T(@,S)e Z
such that ||%gll, £ — (), <3, Yk 2T E.9)
3) Uniform Stability': Given any 5>8,;, there is a D (3)>0
such that Ilfgllp <D@®) - llf(k)”,, <8, vk 20

Proof : By Lemma 1, it suffices to show that there
exist finite finite constants a>0 and 1>r 20 such that
under (14)

W, < ar*IXoll, +8,(1—r*), Yk 20 (15)

From (9), we get the following inequality :
k-1
[i%ll, < DG, I¥oll, + X NPE~j =Dl M G2 G G,
=0

Through some algebraic manipulation and using Lemma?2

1546



we obtain
IO, < IEoll, GIA I, + P2t +8i(1=CIA N, +p2)*)(16)

Thus, if we choose a =1 and r = JlA|l, +p < 1, then (15)
is satisfied. O

Since the transition matrix ®(k) of (12) also satisfies
for some finite constants @20, m >0

OGN, < mak

ip S k=0,1,--- (17)

using the similar manipulation in the proof of Theorem 1
we can get another expression about the upper norm-bound
of [[X(k)ll, as follows:
IE GOl < m (Foll, (0 + m p)
m Py
l-a-mp;

[1 —@+m pz)"] (18)

Thus, we can establish the following theorem.

Theorem?2: Consider (9). If we choose the control parame-
ters of (3) and (4) such that the following inequality is
satisfied:

a+mpy<1, 19

then the following properties hold:

1) Uniform Boundedness: Given any § € [0,e), there exists
a d(S§)<e- such that |[Zoll, <S implies [X(k)ll, Sd(S). Nk 20
2) Uniform Ultimate Boundedness: Given any 3>8, =
mp/(1-a-mp,) and any S e [0), there is a T(8.S)eZ
such that I%oll, <S — XN, <3, V& 2T @.S)

3) Uniform Stability: Given any 3>, there is a D@®)>0
such that Ioll, <D@E) > M, <3, ¥k 20

lAll, as well as o is approximately equal to
max A, ()|, i.e. they are upper bounds of IA;(A4)! where
A (A), i=1,2, - ,s+n denotes the eigenvalues of 4. So,
robustness margins are given by the eigenvalue nearest to
the unit disc in the z-plane.

Because p, of (14) or (19) are dependent on the
norms of the parameters Ky, K13, K2, and Ky, it may not
be easy to satisfy one of (14) and (19). But, if not only the
upper norm-bound of output uncertainties but 85 are small,
ie By=0, B4=0, and Bs=0, then p, =P, as well as
P2 = P, and it is sure that by choosing the gain matrices of
(3) and (4) appropriately, because we can easily satisfy one
of the two inequalities (14) and (19) without seriously car-
ing about the norms of the gain matrices, we can guarantee
uniform ultimate boundedness of all possible closed-loop
system responses within a neighborhood of the zero state.

Consider the special case that fin,(k x (k).u k), of (2)
is bounded by a linear function of |ix||, as well as [lull, and
[mzCk x (kDI of (2) is bounded by a linear function of
kel ie. B, = B3 =0, then (16) and (18) becomes respec-
tively
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IEGON, < IEoll, (A1l +p2)* (20)

and
RGN, < m (IFoll, (ot mpo)t 1)

Thus, the following consequent corollary can be esta-
blished.

Corollary 1: Consider (9) with B;=p;=0. If we
choose of (3) and (4) such that one of the two following
inequalities is satisfied:

WAl +p2<1, 22)
a+mpy<l (23)

where

P2 = Ba+BalliBK 11llyy +1IK 24l )+ BslIIK 1:C K 2]l

Then the closed-loop system (9) with B, = B; = 0 is asymp-
totically stable.

Proof : Immediate from (20), (21), (22) and (23). O

The inequality (23) is similar to the results of Sobel et
al. [8]. Because their results are reduced to the special
cases of our results, we can say that our results are general
ones.

The above inequalities (14), (19), (22) and (23) are
only sufficient conditions. So, we cannot say that robust
controllers necessarily satisfy the inequalities. From the
above inequality conditions, it is recommended in robust
controlier design that one should choose the parameters of
a controller with minimum induced matrix norms. Accord-
ing to the chosen norm, the above sufficient conditions can
be more conservative or less conservative, i.e. the sharp-
ness of the conditions will varies with the chosen norm.
So, we may satisfy the above sufficient conditions with
some norms while with others we may fail to do. Espe-
cially, we may scale the eigenvectors of (12) by using a
diagonal matrix V where V =diag(V;) and V;, i =1, - - s+n
is positive entries of V, then %,.,,,(k)=V7'¥(k) and the
closed-loop system of (9) becomes with X,,,,4(0) = V'2(0)

Trcateak+1) = VI AVE, capea (k) + V0 VT apea (k) (K))
y k) = CVE, (k) + Mok Vo (k) '

and the sufficient conditions (14), (19), (22) and (23) can
be replaced by less conservative conditions respectively.
From the preceding analysis, different controller
design methods can be established. It can be seen from
(10) that the compensator design problem is equivalent to a
static output feedback problem, which has been treated by
several authors. Especially, Kwon and Youn, in [9], drew
the necessary and sufficient conditions for eigenstructure
assignment by output feedback and gave a simple pro-
cedure for eigenstructure assignment by output feedback.
Since to satisfy one of the robust stability conditions we



have only to locate the nominal closed-loop poles inside
the disc in the z—plane the radius of which is determined
by norm-bounds on the uncertainties and/or norms involv-
ing the parameters of both compensator and system model,
the robust controller design can be well performed through
eigenstructure assignment by output feedback.

IV. EXAMPLE
To illustrate the preceding results, we give an exam-
ple.
Example : Consider the following dynamic system:

-2 0 o 10
x(k+1)=1] 0 0.1 0.1|xk)+ |0 O| u(k)
0 2 0.1 01
0.1x3+0.1cos (u,) 5‘I
+ 1 0.1sin(x)—0.1cos (u)| x5=|-5
0.1x sin(u,) 5

100 —0.1x,
y(k)=[010}x(k)+ 0.1xsin (u )
Find a robust static gain output feedback controller which
assures uniform ultimate boundedness of every closed-loop
system responses x (k) within a neighborhood of x(k)=0.
Solution: From the above difference equations, we get
Mtk x (k) k)l € 0.1+ 0.1 kMl and Mk x kPl <
010kl ie. By =0.1, B;=0.1, B3 =0, B, = 0.1, and Bs = 0.
Through eigenstructure assignment by output feedback, we
get a controller as

2 0
“=lo 2|
then (A1};.=0.2, p;=0.1, py=0.1+0.1-2, Il + py = 02 +

0.3 < 1, and the following inequality holds:
e ()]l < 4.80.5% +0.2, Vk20

V. CONCLUSION

In this note, we propose a robust linear shift-invariant
compensator design methodology for discrete-time mul-
tivariable systems which have both matched and
mismatched nonlinear time-varying model uncertainties
with known upper norm-bounds. In order to design a
robust output feedback compensator guaranteeing uniform
ultimate boundedness of every system response within a
neighborhood of the zero state, we use an approach which
is effective on studying augmented feedback control sys-
tems with both mismatched and matched uncertainties.
Through the approach we draw the sufficient conditions
for robust stability, and to satisfy one of the robust stability
conditions we have only to locate the nominal closed-loop
poles inside the disc in the z—plane the radius of which is
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determined by norm-bounds on the uncertainties and/or
norms involving the parameters of both compansator and
system model. Thus, a simple design procedure can be
established based on eigenstructure assignment by output
feedback.
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