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Abstract

A new control algorithm is developed to achicve the
robust performance of the sysiem during the overall
control process. Time-varying sliding maonifolds are
propoved (o remove the reaching phase which is one of
common shortcomings of variable slructure conirol
scheme. A necessary and sufficient condition for the
existence of a sliding mode on the newly proposed
t ime-varying sliding manifolds is derived by Lyapunov’s
second method. The digital simulation resulis show that
the nowly proposed control algorithm is superior to the
typical variable slruclure control algorithm with
roaspect to the robust performance of the system. The
simplicity of the proposed control algoritha encourages
control engineers to iaplement the proposed control
algorithm in mony conirol problems.

1. Introduction

Most of computer-controlled robots used in the world
are scrial linkage manipulators because their available
working space is large. Such a multi-joint robot
arm,however, is a highly - coupled nonlinear system with
complicated interactions between each joint. As to such
a complicated dynamics,quite a number of papers have
presented on the aspect of manipulator control which
are various control conceptions.[1]-[3]

In the conventional controller design for robotic
manipulator, the control algorithm is based on nonlinear
compensations of Lhe plant. This approach requires a
detailed model of the manipulator and an exact load
forcast.[4] In addition, such nonlincar compensations
are complex and costly to iwplement. Tn order to avoid
this difficulty, several control algorithms using the
theory of variable structure systems ( VSS ) have been
developed, (51161

The VSS is designed in such a way that all
trajectories in the state-space are directed toward
some sliding manifolds. Once the system state reaches
the sliding manifolds,it slides along them and the
system  response depends thereafler only on the
gradients of the sliding wmanifolds and remains
insensitive to a class of disturbances and parameter
variations.[7]

However, there is a reaching phase in which the
trajectories starting from a given initial state off
the sliding manifolds tend towards the sliding
manifolds. Thus, the trajectories in this phase arc
sensilive to a class of disturbances and paraseter
variations. 8]

To get. around this difficulty mentioned above , we
introduce the tLime—varying sliding manifolds which are

defined from  given initial states. These time—varying
sliding manifolds approach the fixed original sliding
manifolds within a finite time. The existence of
sliding modes on these time-varying sliding manifolds
are verified by Lyapunov second method.

The effectiveness of the newly proposed tise-varying
sliding manifolds Is desonstrated through the digital
simulations to 2-joint manipulator for the set-point
regulal fons,

2. Fundermental theories of VSS with tise—invariant
sliding manifolds

The conlrol algorithea presented here is derived for
the set-point regulation problem and is appliable to
the class of second-order dynsmic equations with a
positive—definite symmetric incrtis matrix, .

2.1. Manipulator sodel

The dynamics of manipulator with n degree of freedom
are generally described by the following Lagrange-Fuler
formulation:

M@73 + B(q,2)q + G(@) = U (2.1)

where g4 € R"™*! is a vector of n joint shaft angular
displacements, U6 RPX! js a vector of n control input
torgues ,M(Q) € R™*™ |s the effective moment of inertia
matrix,G(q) € R"*! represents the gravitational torques
and RB(q,q) € R"» denotes the Coriolis and centrifugal
Lorques,

let. q4 represent the desired position and define a
new state vector X=(e,w)T where e(t) = q(t) -~ qa(t) and
w(t) = q(t). Then (2.1) is transformed as the following
state equations:

X = [(X) + g(XU (2.2)
where
w
(X =
I' ~M-1(e+qa)[ B(e+qq,w)+G(erqa)
} - o (2.3)
g(X) = M-t

Note that f,g are smooth, local vector fields defined
on X with glo* 0,VX € X,
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2.2 Definition of a sliding mode

Lel S° denotc a smooth function So: 3 --»R,wilh nonzero
gradient on 3. The set

Se={XeR;S(X)=CX=0) (2.4)

defines a (n-1)-dimensional submanifold in ¥ and is
called the sliding manifold or switching surface. The
function S° will often be addressed as the surface
coordinate function.

A variable structure control law is obtained by
letting the control function u; take one of two
feedback values according to the sign of sio(X),as
defined by

ui)  for s1(X) > 0
ui = (2.5)

wilX)  for si00 > 0

+ -
Ui ¥ ui i=1,2,...,n

Let Lao  denote the directional derivative of the
scalar function o with respect to the vector field
h.[9] Suppose that as a result of the control policy
(2.5) the state trajectories of (2.2) locally reach the
sliding surface sio and, from there on ,their motion is
constrained to the immediate vicinily of sio. We say
that sliding modec locally exists on sio if,with ui and
uj (i % j) given by (2.5),the following inequalities
are satisfied:

11w Lesgy 51 €0, 1im Leegu s > 0 (2.6)
(-] o
8i 0+ Si—0-

i.e. the rate of change of the scalar surface
coordinate function sio(X),mcasured in the direcLion of
the controlled field,is such that a crossing of the
surface is guranteed, from each side of the surface,by
use of the switching policy (2.5).

Let dsio denote the gradient of sio and let ¢, >
denote the standard scalar product of wvectors. Then
condition (2.6) are equivalent to

1i-<ds‘§,fogu><o, lin<dsi, f+gU>>0
Si 0+ Si-*0- (2.7)

which alternatively explains that on sio the projection
of the controlled vector fields £ + gU* and F + g~ on
the gradient vector to si® are opposite in sign and

hence Lhe controlled fields l(i;nlly point towards the
surface si®, Fig.1 shows sliding mode on a sliding

mani fold,
\ stm >0
sl
sttty =0 fogqu”
sio <o

Fig.1 Sliding mode on a sliding manifold.

2.3 Ideal sliding mode dynamics.

A definition of the ideal sliding mwode has been given
by Utkin.[10) This definition is known as the wmethod of
cquivalent control.In this approach, ideal sliding modes
are described by the manifold invariance conditions:

s ) = 0
o (2.8a)
Lt+sgveq Si(X) = [ asi/8X 1( f + gleq ) =0
or,more briefly
S0 =0, [35°/aX 1( £ + gleq ) =0 (2.8b)

From the definition of directional derivative and (2.8)
the cquivalent control is explicitly given by

-1
as° as™!
=-1-=- —— f (2.9)
Usq(X) [ P 8] X

Substituting (2.9) into (2.2) yields

X = I—g[

Fquation (2.10) represents an idealized version of
the motions occuring about the s!iding manifolds S° and
they constitute an ‘average’ description for the
behavior of Lhe controlled trajectories of (2.2) and
(2.5) on the sliding manifold S°.

-1
el 20 (2.10)
aX

aX

3. Newly proposed VSS with tise-varying sliding
manifolds

3.1 Newly proposed Lime—varying sliding manifolds

Due to the control policy (2.5) the trajectories of
(2.2) starting from given Initial states off the
sliding manifolds tend towards the sliding manifolds.
Therefore, finite Lime is required for the trajectories
to arrive at the sliding manifolds. This finite timse is
called "reaching phase’. During this period the sliding
moxdes cannot. be obtained and as a result we cannot
obtain the robust. performance of the system.

Tn this section,as an approach to remove the reaching
phase,we introduce time—varying sliding manifolds on
which the sliding modes occur during the overall
control process, The newly proposed time—varying
s1iding manifolds are described as follows.

L=t
t 2

S(X,t) =S°(X) + P . 3.1)

t = tan

where So(X) = CX, P = diag( p1 pz ... pn ) and pi s
determined such thal. the initial trajeclories of (2.2)
lie on the time—varying sliding manifold S(X,t) :

s1(X(to))
pi = - i=12...,n (3.2)
tai - to

From above definition we can know that the proposed
sliding manifolds pass through given initial states at
initial time and approach the fixed original sliding
sanifolds sio(X)=0.

let di define as metric functions which represent the
distances between sio(X)=0 and si(X,t)=0,
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° | sio(X(t))
di(si,si) = S e I~ i=12,...,n (3.3

n o2z
[ 2oy 1172
i=t
where cij is (i, J)-component of the matrix C.

3.2 Selection machanism of sliding manifolds

The proposed time-varying sliding manifolds approach
the fixed original sliding manifolds and pass through
them when t = tai. To cope with this difficulty the
following selection wechanism of Lhe sliding manifolds
must. be adopted according to the value of di(sio,si).

S1(X) + pil t-twi) if di > &
si(X,t) = (3.4

(-]
si(X) if di s &
i=12,....n

where £; is design factor which is selected arbitrarily
at. designer’s disposal.But £i must be selected properly
in view of practical situations,

Fig.2 show the newly proposed time—varying sliding
manifolds and Fig.3 the selection mechanism of sliding
wanifolds.

X

.8i(X,te)m0

51X, ty)=0
for teCtyltar

SuX, ta)aS| (X)=0
for t ) tas

initlal state
A (Xette) Xaite))

Xy

Fig.2 The proposed time—varying sliding manifolds

Si(X, t)=52(X)
+ pi{t-tumi)

Yes
S1(X, t)=S°(X)

Sliding

Mode

Fig.3 The selection mechanism of sliding manifolds.

3.3 Controller design using the theory of VSS

Among several control algorithm using the theory of
VSS, there still exist some nontrivial difficulties in
the design. A major difficulty is related to the
cross-coupling in the inertia matrix.

To get around this difficulty , we introduce Chen’s
control algorithm{13] which takes advantage of an
important property of the inertia matrix,namely its
symmelric positive definiteness.[11]

3.3.1 The reachability of the time-varying sliding
mani folds

Let. qa represent the desired position and choose the
sliding manifolds ST = { s1 s2 ... sa ] = 0 as follows:

L"t-l
S=8 +p . (3.5)
t < tan
where
Se=C*q-qa) +q=[CF:1IX
C* =diagl c1c2 ...cn 1, ¢ci >0
sT(X(to))

P=diagil prpz ... Pn 1, pi=
tai - to

i=12,...,n
The design parameters ci determine the rate of response
of the system, and the aim of the control is to foree
the motion of the system (2.2) to be along the
intersection of the sliding manifolds S° = 0,
Differentiating (3.5) with respect to time yields
S=Cr+q+P . (3.6)
Multiplying the matrix M to (3.6) and inserting (2.2)
yields
MS = MC*y + Mg + MP
= MC#q ~Bq -G+ U + MP
=Q::|-G+HP*U (3.7)

where Q = MC* - B.

We now derive a reachability condition for the
time—varying sliding sanifolds using the stability
theores of lLyapunov. First assume the form of MS to be

MS = - T'sgn(S) = - [aS (3.8)

where
I"=diag ( 71 Y2 ... 7o), 7i 20
s = dlagl risn(s1)/si] 1=1,2,...,n
sgnT(S) = [ sgn(s1) sgn(sz) ... sgn(sa) |

In order to prove that the sliding manifolds S=0 are
asympol.ically stable we introduce the candidate for

. Lyapunov function

V = ST™H(q, S (3.9)

Differentiating V with respect to time and using the
symmetry of M yields

Y = STMS + STMS + STMS

(HS)TS + STHS + ST(KS) (3.10)

Substituting (3.8) into (3.10) and noting that . is
also symmetric gives
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V=257 Fe - W/2)S @3.11)

If ( [a - W2 ) can be made a positivedefinite
matrix,then V will be a negative-semidefinite function
which vanishes only at S=0, Therefore, by means of
Lyapunov’'s stability theory the sliding manifolds are
asysptotically stable. Note that to ensure the negative
definiteness of V the following inequalities are
satisfied.[12]

n -
risgn(si)/si > T | Mij/2 | (3.12)
i=1

3.3.2 Design of variable structure controller

The control input U to gurantee (3.12) can be
obtained from (3.7) and (3.8) as fol lows:

Q&-G#H}HU:—[‘sgn(S) (3.13)
Tlet

Q=Q+ AQ

G=G + AG (3.14)

N=H+ AM
where Q,G and M are estimated values of Q,G and M. AQ
,AG, and AM are modeling errors. Assume the following
bounds for AQij, AGi, AMij and AMij

A | <@y

| AGi [ <G

- (3.15)
| Mig | < Miy

| Mig | < Mas
We construct control input U as follows:

U=Ueq + AU

e

=-Q+G-MP+ AU (3.16)

where Ueq = - aq + 6 - ﬁP
This control law yields with (3.13) and (3.15)
AQq - AG + AMP + AU = - T'sgn(S) (3.17a)

or componentwise,

o .
JZigAQqu = AMijp; ) — AGi + Aui = - 7isgn(si)

(3.17b)

We construct switched control input ui by Chen’s method
as follows.[13]

Aui = - sgn(si){ ;z:.lg Qijlail + Miglpsl ) + G )
. -
- SLE‘( Miy/2) i=1,2,....,n (3.18)
Substituting (3.18) into (3.16) yields the final,

desired control law

-

u = - ',I'I‘s Qid; + Mip; ) +Gi
- sn(s{ X Qisladl + Mislpdl ) » G )

- s;i'( Mii/2 ) (3.19)

The control law (3.19) always satisfies the
inequalities (3.12) and the negative definiteness of V
can always be guranteed. Therefore we can conclude that
the sliding mode on the proposed time-varying sliding
manifolds can always be obtained. Note firstly that the
control law (3.19) is related to the parameter bounds
in a simple fashion so that paraseter variations in the
plant can be taken into account easily. Secondly, the
control law is given for any degree of freedom n of the
plant,

4. Numerical examples

Fig.4 shows a two-link robotic manipulator model used
by Young[14] in his studies.

TR

0
Fig. 1. Twao-link robotic manipuiaior modei.

Fig.4 Two-link robotic manipulator model.

The dynamic equation is given by

M(q)q + Ba,0)q + G(q) = U .1
where q = [0 ¢17
Mgy = (lx*lz)rf + Izl‘i + 2merirzcosd +
M1z = Mz21 = lzl"i + m2rirzcos¢
Mz2 = lzl‘i + Jz
By = - 2mrirz$sing

(4.2)
Biz = - merirzdsing

P21 = merrzésiné
B2z = 0
g1 = - [(mi+m2)ricos@ + marzcos(6+4) 18

g2 = - [m2rzoos(G+4) Ig

The inertia matrix M(q) is positive definite and
symmetric. Parameter values used are the same as those
of [14],
ri=1mr2=08n
Ji = 5 Kg.m, J2 =5 Kg.m, m1 =0.5Kg (4.3
0.5Kg <(mz <6.25Kg
Note that the value of mz is variable due to the

payload.
The time-varying sliding manifolds are selected as

follows

t — tal
t - ta2

Joe e le]

’[P’ 0”“"" 4.4)
(V] pz”t-b-z

S(e,w,t) = S*(e,w) + P [

- 394 -



'90 gt Al 7|88 FAlRE 3 =y 1990, 1L 17

vhere pi amd d; are defined as follows,respectively,
_SiCelto) ulta) )

i = - .5a
P twi— to @.5)
Si( e(t),w(t) )
di = (1 v o2y 172 (4.5b)
i=12,...,n

Acvording to the values of (4.5b) the sliding sanifolds
are selected by the following selection mechanism of
sliding manifolds.

silent) = s?(e.u) + pil t-tmi) if di > &1 .6
s‘i’(e,w) if di <&
i=1,2
From the discussion of section 3, we have

o L
18, 8.2802 +

g | 1883 2 10141 | 82802 + 5161 |
8.28c1 » 510} ; 1.68c2]1 0]

= 101l siél

M= . (4.7
5l 0
18.63  8.28 ]

H= (A.7c)
8.28  3.68

G=1 101.43 45.08 1T (4.7d)

The control inputs are constructed as follows

4t = veqr + sgn(s)f Q)1 + 6:».14l1 + Myt lpe}
+ Myzlpal + Gi ] = 55 Myg + Mgz )/2 (4.8a)

Uz = teqz + sgn(sz)l zhxlél + azzlq;I + Maslpsl

+ Mazlpzl + Gz 1 - szl Mzg + M2z )2 (4.81)

Fig.5 and Fig.8 show the phase diagrams for the
proposed time-varying sliding wanifolds in the presence
of payload change.

5. Conclusions

In order Lo remove reaching phase, the time-varying
sliding manifolds are introduced. By the proposed
scthod in this paper the sliding modes can always be
guaranleed during the overall control process and so
the system has robust perforsance, Therefore paramscler
variations in the plant can easily be coped with , and
load forecast is not needed.The simpic design procedure
encourages control emginecrs Lo faplesent Lhe proposed
variable structure control algoriths in wany control
problens.
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