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Abstracts : In this paper, we shall construct a ridge estimator in a
pultiple linear model with the correlated error structure. The existence
of the biasing parameter satisfying the Mean Squared Error Criterion is
also proved. Furthermore, we shall determine the value of shrinkage factors

by the iteration method.

1. Introduction

Consider the generalized linear model (1.1)

Y=X8+ ¢ (1.1)
where it is assumed that X = (X1,X2,..,Xp) is a known matrix of rank q = p,
Y is an n x 1 vector of observations and € is the n » 1 vector of errors

such that E(e¢) = 0 and E(e €’) = 0%Vn

The classical estimation procedure of model (1,1) is that of generalized
least squares (GLS) in which b 1is chosen such that the residual sum of
squares (b)) = (Y - Xb)'Va~1(Y - Xb) is minimized. In the case that X’Va~1X
is of full rank, (X’'Van~1X)~! exists and the GLS estimators are given by

bg = (X'Va~1X)~1X'Vn~1Y (1.2)

However, in the case that X'Van~1X is of rank q ¢ p, alternate methods
nust be employed to obtain the estimators. In fact if X'Van~=1X is of full rank
but at least one eigenvalue approaches zero, the GLS estimators are sensitive
to a number of errors, Further, the variance of GLS estimator become large as

the matrix X'Va~1X approaches singularity. Although the Gauss-Markov
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Theorem assures us that in the class of all unbiased estimators, the GLS
estimator among the estimable functions have minimum variance, we are
faced with the unhappy circumstances and, hence procedure a large
confidence intervals for the estimators.

One way to remedy this problem is to drop the requirement that bg is
is unbiased. Hoerl and Kennard (1970) have suggested that the ordinary
least squares estimator may be replaced by the ridge estimator with positive
biasing parameter. But Hoerl and Kennard’'s ridge estimator is derived from
the assumption usually made concerning the linear regression model with the
uncorrelated error structure.

In this article, we showed that if a biased estimator could be considered
and if one would use a different criterion for estimator selection, namely
the mean squared error criterion of an estimator, the ridge-type regression

estimator could be shown to be superior to the GLS estimator.

I. The Form of Ridge Estimator
Let T" be a diagonal matrix of eigenvalue, A i, of X’Va™1X and G be an
orthogonal matrix of corresponding eigenvectors. Then we have G’X’'Vn~1XG=T
and GG'=Ip. If we write X*=XG and a=G’ A3, then the linear model (1.1) may
be written as
Y=X*a + ¢ (2.1)

Then the GLS estimator a of @ is given by

a = (X* Va~1X*)"1X*'V,~tY
= ["1G’X'Vn—tY
Var(a) = 27"t

Unfortunately if at least one or more eigenvalues approach to zero, the
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corresponding coordinate of an estimator has large varianc o2 it By
allowing a small amount of bias, we can obtain a biased estimator that has
variance less than any unbiased estimators, A number of procedure have
have developed for obtaining biased estimators of regression coefficients.

The generalized ridge estimator (GRE) of « in (2.1) is obtained by

augmenting the ith diagonal elements of I" by a positive constants ki, i.e

ak = (I' + K)-1G'X’Va~ty, K = Diag(ki) (2.2)
Then the GRE of B in (1.1) may now be written as
bx = Gag

G(I" + K)71G’X'Va~1Y

GAG'bg (2.3

where A = (I + K)-'T" = Diag( & i) is diagonal matrix of shrinkage factors.

Lemma 2.1 The generalized ridge estimator bk is biased estimator and
Var{(bk) = o2(X'Va~1X + K)~1X’Va~t1X(X'Vp~=1X + K)-!

Bias(bx) = G Diag(di-1)G’ B, where Siz=Ai(Ai + ki)-t, i=1,2,...p

Gauss in 1809 suggested mean squared error (MSE) as the most relevent
criterion for choice among estimators. The MSE as defined in (2.4) is Just
the expected squared distance from b to B and frequently used to measure
adequacy of an estimator.

MSE (b) = E (b - 8)' (b - B) (2.4)

Also, more generally, it may be possible form a suitable weight sum
of coefficients mean squared error WMSE (b) = E(b -~ 8)'W(b - 8), where W

is a non-negative definite matrix. The mean square error of bx therefore is

MSE(bx) = Tr[Var(bk)] + [Bias(bk)]’[Bias(bk)]

o 2Tr[ (X’ Va=1X + K)=1X'Vn=1X(X'Va~1X + K)~1]

+ a’Diag(8i - 1)2¢
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Ai A

P P
=02 Y —— + I gi2(—— - 1)2 (2.5)
i=1 (A + ki)? i=1 Ai + ki
The first term on the right-hand side of (2.5) is the sum of variance

of the parameter in bk and the second term is the square of the bias. If

ki> 0, note that the bias in bk increase with ki.

. Mean Squared Error Comparisons

In using ridge regression, we would like to choose a value of biasing
parameter such that the reduction in the variance term is greater than the
increase in the squared bias, If this can be done, the mean squared error
of the ridge estimator bx will be less than that of GLS estimator bg.

The purpose of this section is to establish a existence of a single
biasing parameter k such that MSE of ridge estimator bk (K=klIp) is less
than the MSE of the GLS estimator bg. To show this, the following MSE
matrix will be used,

MEXMSE (B) = E(b - B)(b - 8)° (3.1)

Lemma 3.1 The followings are equivalent.
‘@ MtxMSE (by) - MtxMSE (bz) is non-negative definite.
(b WMSE (b1) - WMSE (b2) > O for all non-negative definite W

{Proof) See C.M. Theobald(1974)

Lemma 3.2 Let A be a positive definite n x n matrix and u be an n x 1
column vector (i.e. w’ &€ Ea). Then
(u'x)2

sup = uw’A"'u and supremum is attained at x=A-tu.
x'e En x'Ax

(Proof) See C.R. Rao (1965)
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For K = klp, next theorem says that there exists a non-zero k for which

WMSE(bk) is less than that of generalized least squares estimator b.

Theorem 3.3 There exists & kmax 7 O such that MtxMSE(b) - MtxMSE(bk)
20¢%
B'B

(Proof) Let Q = MtxMSE(b) — MtxMSE(bk) and 7 be any non-zero constant

is non-negative definite where 0 ¢{ k {( kmax. and Kmax =

vector. Then
Q = c2(X’'Va™1X)"1- g2(X'Va~-1X + KIp) =X’V 1X(X'Va~1X + kIp)-1

= k2(X’Va~1X + kIp)=t 8 B (X'Vn~1X + kIp)-1

Put & = (X’Va~1X + klp)~t
7' Qn = 628 [(X’Va~1X + KIp) (X' Va~1X)~H(X'Va~1X + klg)
BB
- X'Va~iX - k2 Ik
0-'2
28 B3’
= o2& [kZ(X'Va~1X)~1 + 2kIp - k2 1£
52
For any non-zero constant vector 7,
n'Qn =20 for n» =0
E'BB’E
if and only if < o2

E'I(X'Vam1X)~t + (2/K)Ipl &

(£'8)2
if and only if (&) = <1
28 [(X'Va~1X)~1t + (2/K) Il &

By Lemmma 3.2

1
sup (&) = B I[(X'Va~1X)—t + (2/K)Ip]-18 < 1
£ c?
if and only if B'IX'Va~1X)-1 + (2/K)Ip]tB8 £ 62

In terms of eigenvalue decomposition,
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2

if and only if B'G(Ir"1 + — Ip)~1G’' B < o2
k
if and only if
k k
a’— [Ip - Disg(—————) ] a < o2
2 k+2Ai
k
Since Ip — Diag(—————) has positive diagonal elements less than 1,
k+ A
k k
a’— Ilpa £ o2 implies —a'a < o2
2 2
202 202
Hence k < = = Kmax
a’'a B’'RB

Since kmax must be strictly positive for all o and B8 provided that

A’ B is bounded, this proves the existence theorem w.r.t MSE criterion.

V. The Estimation Procedure of Biasing Parameter

In the previous section, the existence of k satisfying MSE criterion
is proved by showing that (O, kmax) is non-empty. However, the range
(0, kmax) contains infinite number of values of k, it is difficult to find
the appropriate value of k in the acceptable range (O, kmax). In this
section, we derive the analytic solution of k to the generalized ridge
estimator.

From equation (2.5), the MSE of the it} component of bk is

MSE (bk.i) = 028i2Ai"1 +  @@i2(&i - 12 (4.1)

The necessary condition for a minimum of (4.1) requires that its deri-

vative with respect to &1 is to be zero. Then we obtain the minimum MSE

value of & as

SiM = ai2(c2Ait + qi?2)"t (4.2)
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and the corresponding MSE value of Kk is
kiM =  g2@i-?

Now starting with the initial value as ki¢®> = s2(ai)~2 where s? is the
unbiased estimator of 02 and ¢&i°?> = Fi/(1 + Fi) where Fi = Ai(ai)?/s2,
a supscript (j), J =0,1,2..., is number of iterates, we obtain that the
generalized ridge estimator ax,i¢®? of «i is now §i¢%aj.

At j-th iteration, we may consider the following sequences

Fi Fi

(510, 5= T > (4.3)
(5102 + F; (519922 + Fi

and the corresponding generalized ridge estimaotr is

{ag,i9ak,i =8 :i¢ak, 9, ....,ak,19912=5 U0k, 1992, ..> (4.4)

For terminating the sequence <& i¢i*12>, the difference & ;i¢J+t2-5;¢J?
must be monotonically decreasing. That is, the derivative of & i¢i*12-5 ;0D
w.r.t 5i%i? must be negative. Then & i¢J? satisfies the following equations.

2Fi(§i%2)3  ( FiZ + 2Fi(5iY92)=2 + (§;032)~4 (4.5)
Mutiplying by (& i¢3?)4, Fi~2,
2Fi~1 842 (81N + 2Fi(5i99N2 + Fi~2 (4.86)

Hence we have the following convergence condition.

Theorem 4.1 The sequence in (4.3) converges to & i* when the inequality

holds.
2Fi-1 & ;¢ < [(&i¢diNn2 + Fi—1]2 (4.7

where §i* =¥ =+ (Y4 - Fi~1)172

Note that & i* depends upon Fi whether F; < 4 or Fi ) 4
Case 1 Fi < 4

Since the values of & i* in Theorem 4.1 are imaginary, omitting
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the imaginary part, & i* equals to %. But this solution does not
satisfy the inequality in (4.7). In this case we will use Ji as 0.
Case 2 Fi > 4
Although & i* has two solution with negative and positive part,
the solution with negative part does not satisfy the convergence
condition in Theorem 4.1. Hence we have & i* as % + (! - Fi-1)1/2,

Hence we obtain the following results.

Theorem 4.2 The generalized ridge estimator ax = (ak.i) is written by
aK.i = [ 0 if F; <€ 4

[V + (Y - Fi~1)172]qg; if Fi > 4

V. Concluding Remark

We have examined some properties of the ridge estimations in the
linear regression model with multicollinearity. Inparticular, we have
investigated bias and mean squared error of ridge estimator based on
generalized least squares estimator. Also in addition to Hoerl & Kennard's
ridge estimator based on ordinary least squares estimator, our ridge esti-
mator emerging from this studies have considerable evidence indicating the
superiority than generalized least squares estimator if multicollinearity
is present.

Even though several rules for choosing k are proposed by many authors,
thses rules are intended to aid an investigator confronted with a specfic
regression problem to arrive at acceptable choice of k. But there is no
known optimally mathmatical method of explicitly determining the value k

in a given problem. That is, a Monte Carlo simulation failed to show any
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obvious superiority among these methods.

Also, in practice Vn is not known, one may have an approximation Vn*
to Vn and perhaps a reasonble bound on the departure of Vn* from Vn. If
one use Vn* instead of Vn, we will wusually incur an error in the esti-
mated coefficient vector. Hence the explicit method of determining the

approximation Vn* is necessary in a given problen.
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