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Abstract

A predictive functional relationship model is presented for the calibra-
tion problem in which the standard as well as the nonstandard measurements
are subject to error.  For the estimation of the relationship between the two
measurements, the ordinary least squares and maximum likelihood estima-
tion methods are considered, while for the prediction of unknown standard
measurements we consider direct and inverse approaches. Relative perfor-
mances of those calibration procedures are compared in terms of the asymp-
totic mean square error of prediction.

1. Introduction

The statistical calibration of a nonstandard instrument or method in-
volves two distinct but related activities: first, the determination of the rela-
tionship between the nonstandard and standard measurements by perform-
ing a calibration experiment, and second, the estimation (prediction) of the
standard measurement in the future based upon the estimated relationship
and future nonstandard observations.

The fundamental assumption in the classical theory of calibration is
that the standard method measures a certain characteristic without error.
Although this assumption is convenient and necessary for utilizing elegant

t This is a summary of the paper presented in Communications in Stati-
stics, 3821 — 3840, 1989.
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theories of linear regression, its validity is questionable in many real world
applications.

Recently several authors investigated the calibration problem when the
standard as well as the nonstandard measurement is subject to error. Man-
del (1984), in discussing applicability of the ordinary least squares (OLS)
procedure when both variables are subject to error, proposed a new estima-
tion method based upon transformation of the original, error-contaminated
data. Carroll and Spiegelman (1986) examined the effect of ignoring small
measurement errors on the performance of the OLS procedure. Based upon
large-sample approximation, they identified critical quantities which affect
the confidence limits of the unknown standard measurement and the aver-
age behavior of the OLS estimators of the unknown parameters. Lwin and
Spiegelman (1986) considered a situation where imprecise measurements are
calibrated against working standards which are rarely exact. They also con-
structed confidence limits of the unknown exact values assuming that errors
in the working 'standards are bounded. Fuller (1987, p.177) considered a
calibration problem when the error variance of the standard measurement is
known. He proposed a modification of the maximum likelihood (ML) esti-
mator for the slope parameter of the functional relationship model, and gave
an estimate of the asymptotic mean square error of the predictor.

The present investigation takes an error-in—variables approach to the
proposed calibration problem, and compares several competing calibration
procedures. That is, procedures based the OLS and ML estimation, com-
bined with “direct” and “inverse” prediction, are compared in terms of the
asymptotic mean square error (AMSE) of predicton.

2. The model and estimators

The following model is proposed for the calibration experiment.

z; =& +u (1)
Yi =N + 0 1=1,2,...,n (2)
ni = a+ B (3)

where unobservables &; and 7; respectively represent the true standard and
nonstandard measurement, and a and 8 are unknown constants. Random
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measurement error vectors are assumed to be independently, identically dis-

tributed as )
[“"] %‘BVN{O,[ Tu ”""{"”]} (4)
Ui POuOy oy,

where BVN reads ‘bivariate normal distribution’.
By symmetry, relationship (3) can be rewritten as

§,~=’y+6r},-, i:1,2,...,n (5)

where vy = —a/f and 6 = 1/8.

The model in Egs. (1), (2), and (3), or (1), (2), and (5) is commonly
called an errors-in-variables model (EVM) in the literature. The EVM is
further classified into the functional or structural model depending upon the
nature of the variables involved. That is, it is called functional if variables
involved are fixed, and structural if random (Kendall and Stuart, 1979).

In this paper ¢ and 7 are assumed to be fixed, and the OLS and ML
methods are considered for the estimation of relationships (3) and (5).

The OLS estimators of 8, «,§, and v are respectively given by

bors = Szy/Szz (6)
aors = § — borsT (7)
doLs = Sry/syy (8)
corLs = I —dorsy (9)

For the ML estimation, further information on error varinaces is needed
to avoid the indentifiability problem. In this paper we assume that the ratio
of error variances, A\ = 02/02%, and p are known. Then, the ML estimators
of § and « are respectively given by (e.g., see Kendall and Stuart, 1979)

by = {P+(P? - Q)*}/R (10)
ay =9 - bys (11)

where P = Sy, — ASpz, Q = 4(Szy — 65::)(6Syy — ASzy), R = 2(Syy —
aszz)’ § = pgu/av = ,0/\_%
Similary, the ML estimators of § and « are respectively given by
dy = {P* +(P** - Q")3}/R" (12)
cM =T —dmy (13)

256



where P* = AS,; — Syy, Q* = 4(ASzy — 0S4y )(8S2z — Szy), R* = 2(AS,y —
0Syy)

In the future, suppose nonstandard measurement y; is obtained where

yr =105+ vy
= (a+ BEf) + vy, vg~N(0,02) (14)

Then, based upon relationship (3), the corresponding £y is estimated as

€rp = (ys —a)/b (15)

where a and b are either the OLS or ML estimators of o and 3, respectively.
If relationship (5) is used, £ is predicted as

Eﬁ:c-{-dyf (16)

where ¢ and d are either the OLS or ML estimators of v and &, respectively.
Following Mandel (1984), we will subsequently call (15) and (16) “direct”
and “inverse” predictor, respectively.

The ML estimation method has the interesting property that it yields
the same estimate of {; regardless of the prediction method adopted. To
show this, note that bys = 1/dp;. Then,

€rp = (yr — am)/bv = (ys — 9)/bm + % = (yy — 9)dm + @
= dmys + (2 — dmy) = dmys + cm = &4y
Therefore, in this paper the following three procedures are compared in terms

of the mean square error of prediction, E(é 5 —&5)?, based upon large-sample
approximation.

Procedure 1 : direct prediction, OLS estimation
Procedure 2 : direct prediction, ML estimation
Procedure 3 : inverse prediction, OLS estimation
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3. Asymptotic mean square error of prediction

For simplicity, AMSE’s for estimators in Egs. (15) and (16) are deter-
mined when the true value for p in Eq. (4) is 0.

After some algebraic manipulation, Eqs. (15) and (16) can be respec-
tively rewritten as

€rp— €5 = (& —E)B/b—1)+u—v/b+vs/b (17)
€rr— €5 = (np — 1)(d — &) +u — do + dvy (18)

where b and d are either the OLS or ML estimators of # and 6, respectively.
It is well known (e.g., see Davies and Hutton, 1975) that bo s is asymp-

totically normally distributed with asymptotic bias (ABIAS) and variance
(AVAR) as

ABIAS(bOLs) = ——,3/(1 -+ TE) (19)
AVAR(bors) = n M (1 +7¢) + BPre(1 +78)/ (1 +7¢)*}  (20)

where

re = lim Y (6~ £/(nod) (21)

For the ML estimator byy, it is asymptotically unbiased, and its asymptotic
variance is given by (e.g., see Gleser, 1981)

AVAR(by) = n~{03/(1202) + 02 /(re0?) + B /7¢} (22)

Then, the results on the asymptotic properties of b can be used to charac-
terize the asymptotic behavior of £,p — & It can be shown that £5p — &
is asymptotically normal, and

AMSEL = n7 {5 — £) + Yol (1 + 7e)° /r¢ + (1 +78)/7¢ )]
+n7te +(n7! + Dol (1 + 7’5)2/7'52 + (&5 — 5-)2/7'52 (22)

AMSE2 = n~'[{(¢é5 — &) + Yol Ho /¢ + /e + 1/7¢}]
+n7lol + (n7! + 1)yol (23)
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where
Y =0;/(B%02) (24)
Similary, the AMSE of £ 1 for Procedure 3 is given by
AMSE3 = n ™ [{(&5 — €)® + Yol H{1/¥(1 + 1) + (1 + 72)/(1 + 74)*}]
+n7loy +(n7h 4 Dgonrs (14 19) + (65 — )7/ (1+7)° (25)
where

= lim Y (mi = 1)*/(no}) = 7e/¥ (26)

4. AMSE comparisons

It can be easily shown that AMSE1 > AMSE2. To compare Procedures
2 and 3, we reexpress AMSE2 in terms of 7, as follows.

AMSE2 =n""[{(&f — )* + Yoy {1/ (ra) + 1/my + 1/(r90)}]
+n7o2 4 (7! 4 1)po? (27)
Then, it can be shown that AMSE2 - AMSE3 < 0 if and only if
nTH{(h+p)g+r}—(h—71)<0 (28)

where h = (&5 — €)%, p = o}, ¢ = (1 +2r)(1 + 7,)/(73¢) + (1 + 47 +
572 + 473)/{ry(1 + 7)%}, and r = po?(1 + 27,). Solving inequality (28)
with respect to n and h we obtain the following,.

1. If 0 < n < ¢, then no h > 0 exists to satisfy (28). In other words,
AMSE2 > AMSE3 in this case.
2. If n > ¢, then (28) is equivalent to

h>h* =(pg+r+nr)/(n—q) (29)

For some selected parameter values, Figures 1 and 2 illustrate Vh* versus n
by the contours which fix the boundaries of preference between Procedures

2 and 3.
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Figure 1. Contours of vh versus n (Ou = 0.001, ¥ = 10).
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Figure 2. Contours of vh versus n (o, = 0.0, Y= 0.1).
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We note that h* is a decreasing funtion of n since

oh*
on

= —(gr+pg+r)/(n—g)° <0

Furthermore, as o2 increases h* also increases. To show this, note that

as 02 increases 1 decreases, and consequently, g increases. However, h* is

an increasing function of ¢ since

o = {bln =)+ (g + 7+ 1)} /(n — 9 > 0

Therefore, h* increases as aﬁ increases. This behavior of h* can be also

observed in Figures 1 and 2. We also found that h* is not necessarily an
increasing funtion of 7, for a given n, o2, and ¥ (although it is so for the
cases in Figures 1 and 2).

5. Conclusion

For the calibration problem when both measurements are subject to
error, a predictive functional relationship model is proposed and three es-
timation/prediction procedures were compared in terms of the asymptotic
mean square error of prediction.

It is found that AMSE values for Procedure 1 (OLS estimation and di-
rect prediction) are always larger than those of Procedure 2 (ML estimation).
The choice between Procedures 2 and 3 (OLS estimation and inverse pre-
diction) depends upon the values of parameters involved. In general, the
superiority of Procedure 3 tends to be restricted to the region where ;¢ is

close to £ (i.e., where h = ({5 — E_)Z is small). This trend becomes more
prominent as n increases and/or o2 decreases.
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