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Abstract

We compare the reflectivity spectrum and phase change of
Bragg reflectors obtained by the matrix method and the cou-
pled wave method. We show that the results obtained by
the two methods agree well generally and the discrepancy
between the results obtained by the two methods increases
as the fractional refractive index difference between adjacent
layers increases and/or the absorption loss increases, due to
the approximations inherent in the coupled wave method for

the analysis of multiple dielectric layers.

1 Introduction

Periodic optical media and stratified periodic optical struc-
tures play an important role in a number of applications in
optics. Recent developments in crystal-growing techniques
have made it possible to monolithicall'y grow high reflectance
Bragg mirrors {1]. Integration of Bragg reflectors has enabled
important optical devices such as vertically emitting lasers
{2} and microresonators to be monolithically grown [3].

There are two important theoretical methods to analyze
the distributed feedback (DFB) structures. One is the ma-
trix method and the other is the coupled-wave method. The
use of the matrix method in studying the propagation of
plane electromagnetic waves through a stratified inedium is
well known in optics [4]. However, it is very difficult to
obtain simple analytic expressions of the reflectance spec-
trum for stratified periodic structures when using a matrix
method. The coupled-wave method has long been used to
analyze the characteristics for a periodic layered medium be-
cause it gives simple analytic expressions for the reflectivity
spectrum of Bragg reflectors [5]. However, the coupled-wave
method assumes that the beam is incident into the DFB
structure from a medium with an average refractive index
of the DFB structure. This means that the coupled-wave
method does not consider the effect of end reflections occur-
ring (rom the boundaries of the DFB structure.

We present theories for Bragg reflectors in the simultane-

ous presence of refractive index modulation and absorption
modulation using both the matrix méthod and the coupled-
wave method. For the sake of simplicity, we will only con-
sider the case of normal incidence. We will show that in
general the results obtained by the matrix method and the
coupled-wave method agree well for the reflectance spectrum
and the phase change from a Bragg reflector as a function of
detuning, §L. Also, we will see that the difference between
the results by the two methods increases as the fractional
refractive index difference between adjacent layers, An/ng,
increases and/or the absorption loss increases, due to the

approximations inherent in the coupled wave method.

2 The Matrix Method

Consider the structure as shown in Fig.1 with an electric
field travelling in the yz plane. The electric field in the ith

layer can be represented by

E, = {(&'E}ezp[—iki(z —di_1)] +
&7 Er expliki(z ~ di_y)]}ezpli(wt)], (1)

where &} and é represent the unit vectors along the di-
rection of the electric field, and E} and E represent the
electric field amplitudes of waves propagating in the forward
and backward directions, respectively. Imposing the conti-
nuity of tangential components of £ and H at the interface
separating ith and (i+1)th layers and after some matrix ma-

nipulations, we obtain the following matrix equation [6]

E:‘ 1 (k. + k-+l)ew' (kv - k-+l)e“' itl
E; ] (ki ~ kp)e ™ (ki + kigg)e™ E7, ®
where A, =d, ~d;_y, 80 = 0,8, = kA, k; = kon,, n, is the
complex refractive index of ith layer, ko is the propagation

constant in {ree space. We could represent eq. (2) as

] _ g [ e
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and r, and ¢, represent the amplitude reflection and transmis-
sion coefficients at the interface separating ith and (i+1)th
layers, respectively.

These matrix relations can be used to determine the trans-
mission and rteflection from a layered structure as follows.

The electric fields across a layer or boundary are related,
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so that we can determine the matrix relation across the en-
tire structure by multiplying the relevant matrices together.
Assuming that light is incident from only one side of the
structure, we could put Ef;,, = 0. This boundary condi-
tion allows us to determine the incident fields E, and E

in terms of EJ;y

Bt E:.
¥ 25051”‘5" final
E 0

(4

Since the incident electric fields EY, and E, are expressed in
terms of Ef,,,,,, we can calculate the complex reflection co-
efficient of a multilayer structure, r = E,./E} if we know
the refractive index and absorption coefficient in each layer.
The reflectivity of a multilayer structure is the square mag-
nitude of the complex reflection coefficient of a multilayer
structure because the intensity I is given by I « n | E |*.
Also, we can calculate the phase change of electric fields in a

multilayer structure from the complex reflection coefficient.

3 The Coupled-wave method

Bragg reflectors consist of alternating periodic quarter wave-
length layers with different refractive index and absorption
coefficient. In GaAs based materials, the material with high
refractive index has the narrow bandgap. Consider the Bragg
reflectors shown in Fig.2. Since the optical thickness of each
layer i3 a quarter of the Bragg wavelength, the ratio of the
thickness of the layer with high refractive index to the period
of the Bragg reflector, g, is given by a = ng /(na+n.), where
ng and ny, represent the low refractive index and high refrac-
tive index, respectively. For the sake of simplicity, we will
assume that the layer with high refractive index is lossy and
the layer with low refractive index is transparent (a =0).
Since the coupled-wave method considers the periodic

variation of the dielectric constant and absorption coeffi-
cient as a perturbation that couples the unperturbed normal
waves of the structure, we have to calculate the average re-

fractive index, ng,, of the structure. Since Bragg reflectors

are composed of alternating periodic quarter wavelength lay-

ers with different refractive index at the Bragg wavelength,

the period corresponds to the half wavelength of the medium

with n,, at the Bragg wavelength. Thus, the average refrac-
tive index of a Bragg reflector is given by

=ﬁ_ 2nhn; 5
2A " mat g (%)

nll

where }p is the Bragg wavelength. The complex dielectric

-88_

constant, ¢(z), as a function of z is written as
€(2) = €ar + A£(2) —i0(2), (6)

where ¢4, is the unperturbed part of the dielectric constant,
o{z) is given by ngeadoa(2)/2m, Ao is the free space wave-
length of the incident light. Both o(z) and Ae(z) are peri-
odic in the = direction.

The starting point of the analysis is Maxwell’s wave equa-
tion

(9" + wne(2)} Efz) = 0. M

Since we are interested in the coupling of two waves, the
incident and the reflected, in a Bragg reflector intcracting
through the first order spatial Fourier component of complex
dielectric constant, it is convenient to express the complex
amplitude of the field E{z) as a sum of the wave E; prop-
agating in the positive direction of the z axis and the wave

E, propagating in the negative direction of the r axis:
E(2) = Ef(2)e™* + Ei(2)e™ (8)

where E,(z) and Ey(z) are slowly varying ¢emplex ampli-
tudes. '

We choose the origin of coordinate system z = 0 in the
middle of the layer with low refractive index [7]. Putting
eq.(8) into eq.(7), using slowly varying envelope approxima-
tion (| £°E/d2® |«| BdE/dz 1), and performing the usual

manipulations {5], we obtain the coupled wave equations
d e i @
L Er(z)=GK + F)Ei(z)e'™" — a-z—E,(:),

LBz = (K = F)B (e ™ 4 aSE(), (9)
where K = sin(ax)(n} — n})/(na ), F = sin(am)af(27),

and § = 8 — (n/A).

refractive index modulation, F is the coupling coefficient

K is the coupling coefficient due to

due to absorption modulation, and a is a measure of the
difference of adjacent layer thickness of a Bragg reflector.
The wavelength Jependence of K can be ignored because it is
of second order. This i3 consistent with the approximations
inherent in the coupled wave method [8]. This means that
K = sin(a7){(n} - n{)/(na,.\g).

Imposing the boundary condition Ej(z) = 0 at z = L, we
obtain an analytic expression for the reflection coefficient

Ei(0)
E(0)
(K iF sinh(sL)
(K= )J cosh(sL) + i(6 — ia§)sinh{sL)’

]

(10)
where

,=\/{(K1—P)—6’+

2,2
“;’ } +i{baa = 2KF}.  (11)
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This reflection coefficient of eq.(10) is obtained when a half
of a quarter wavelength layer with low refractive index is
on the top of a Bragg reflector because we chose the origin
of coordinate system z = 0 in the middle of the layer with
low refractive index to calculate the Fourier components of
complex dielectric constant.

We could think this low refractive index layer with a thick-
ness of one-eighth of an optical wavelength of the Bragg
wavelength as a phase shifter. Then, we could obtain the
reflection coefficient of a Bragg reflector when the outermost
layer has the high refractive index, ry, as

Ei(0)e'¥
E (0)e~'7

ry = = re't = ir. (1)

If the layer sequence is changed (outermost layer has the low

refractive index), the reflection coefficient, rz, i3 given by

Ey(0)e'% it .
L=—E':(—3)—e,—%-=re T = —tr = —ry (13)

When the layer sequence is changed, the phase of a reflection
coefficient changes by 7 radian; however the magnitude of a

reflection coefficient is the same.

4 Comparison of the Results by the Ma-

trix Method and the Cohpled—Wave method

We calculated the reflectivity as a function of detuning by
the two methods to compare the results. We used eq.{2) in
the matrix method case. In the coupled wave method case,
we used eq.(13). Figs.3 and 4 show the reflectivity spectrum
obtained by the two methods as a function of detuning in
the case of absorption loss (aL) = 1 for KL = 1.1. An/ny =
0.2 and N = 6 were used in Fig.3, and An/n; = 0.067 and N
= 17 were used in Fig.4, where N is the number of periods.
Since we used different values of An/n; to obtain the re-
flectance spectrum of Figs.3 and 4 for same K L, the number
of layers used in each figure is different. We can clearly see
that the difference between reﬂelctance spectrum obtained
by the two methods is small when the fractional refractive
index difference is small and is lacger when the fractional
refractive index difference is larger. We may attribute the
rapid decrease of the differences in Fig.4 compared to those
in Fig.3 to the approximations inherent in the coupled wave
method which assume Anfn; <€ 1{53]

Figs.3 and 5 show the reflectance spectrum obtained by

the two methods in the case of same KL = 1.1 and An/ny,

but two different absorption loss. We can clearly see that
the difference between reflectance spectrum obtained by the
two methods is small when the absorption loss is small and is
larger when the absorption loss is larger. We may attribute
the rapid decrease of the differences in Fig. 5 compared to
those in Fig.3 to the approximations inherent in the coupled
wave method which assume (al) < 1.

We calculated the phase change as a function of detuning
by the two methods when the absorption loss and K L remain
the same but Anfn; changes. We can see the difference of
the phase change spectrum obtained by the two methods
also decreases, as An/n; decreases. We compared the phase
change obtained in the presence of same KL and An/ng,
but two different absorption loss. We can see the difference
of the phase change spectrum obtained by the two methods

also decreases, as absorption loss decreases.

5 Conclusions

We compared the results obtained by the matrix method and
the coupled-wave method. We see that in general these two
results agree well for the reflectance spectrum and the phase

change from a Bragg reflector as a function of detuning, §L.

Also, we see that the difference between the results by the
two methods increases as the fractional refractive index dif-
ference between adjacent layers, An/n;, increases andfor
the absorption loss increases, due to the approximations in-
herent in the coupled wave method for the analysis of mul-
tiple dielectric layers. Since the coupled wave equation is a
differential equation, however the multiple dielectric layers is
a discrete system so that the inherent approximations in the
coupled wave method for the analysis of multiple dielectric
layers are the fractonal refractive index difference between

adjacent layers is small and the absorption loss is small.

References
[1] P. L. Gourley and T. J. Drummond, Appl. Phys. Lett.,
vol. 49, 439 (1936).

(2] M. Ogura, T. Hata, and T. Yao, Jpn. J. Appl. Phys.,,
vol. 23, L512 (1984).

[3] J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard,
and J. H. English, Appl. Phys. Lett., vol. 51, 94 (1987).

[4] M. Born and E. Wolf, Principles of Optics, MacMillan,
New York, 1964.

_89_



A 53 % g solx s&Ewkx 3 (790, 2.10)

[5] A. Yariv and P. Yeh, Optical Waves in Crysials, John
Wiley & Sons, New York, 1934..

6] A. K. Chatak, K. Thyagarajan, and M. R. Shenoy, J.
Lightwave Technol., vol. LT-5, 660 (1987).
[7) W. Streifer, D. R. Scifres, and R. D. Burnham, [EEE J.

Quantum Electron., vol. QE-12, 422, (1976).

[8] H. A. Haus, Waues and Fields in Optoclectronics,

Prentice-Hall, Inc., Englewood Cliffs, 1984.

P O I JO S . . .
En|E: [E2 B [ By, Bt {Br [B e
ﬂi. l'll nl ar— ﬂl n"| ca— nn_l ﬂN “l‘-

E.|E) (B2 B | B Bhq[Bn JE fu
=0 4 4, 4y 4 4y dya Gy dy
Fig. 1: The layered structure used in formulating the ma-
trix method.
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Fig. 2: The geometry of a Bragg reflector.

_90...

2000 seonan
L Cnuphad wave apmpbog

Redeciivity

Devamss (521
Fig. 3: The reflectance spectrum obtained by the two meth-
ods in the case of an absorption loss as 1 for KL = 1.1

and Anfnp = 0.2
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Fig. 4: The reflectance spectrum obtained by the two meth-
ods in the case of an absorption loss as 1 for KL = 1.1

and An/n; = 0.067.
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Fig. 5: The reflectance spectrum obtained by the two meth-

ods in a lossless case for KL = 1.1 and Anfng = 0.2



