90 KACC 1990, 10. 26 ~27

Design of an Embedded Intelligent Controller

Hiromitsu Shirakawa, Tsunetoshi Hayashi and Yutaka Ohno

Department of Computer Science and
Systems Engineering

Ritsumeikan University
Kita-ku, Kyoto, 603 Japan

Abstract

There is an increasing need to apply artificial intelligence to
the real application fields of industry. These include an
intelligent process control, an expert machine and a diagnostic
and/or maintenance machine. These applications are
implemented in Al Languages. It is commonly recognized
that AI Languages, such as Common Lisp or Prolog, require
a workstation. This is mainly due to the fact that both
languages need a large amount of memory space and disk
storage space. Workstations are appropriate for a laboratory
or office environment. However, they are too bulky to use in
the real application fields of industry or business. Also users
who apply artificial intelligence to these fields wish to have
their own operating systems. We propose a new design
method of an intelligent controller which is embedded within
equipment and provides easy-to-use tools for artificial
intelligence applications. In this paper we describe the new
design method of a VMEbus based intelligent controller for
artificial intelligence applications and a small operating system
which supports Common Lisp and Prolog.

1. Introduction

Icon is the name of an embedded intelligent controller
specifically designed for artificial intelligence applications.
Icon has these characteristics.

» It supports Common Lisp and Prolog.

+ These languages and operating system are built into
ROM for fast startup.

» It has an open operating system, any part of which is
reprogrammable by users.

« It is a compact computer which may be embedded
within a control equipment.

Common Lisp was chosen as it has become the de facto
standard. Prolog was also chosen as it is well suited for
artificial intelligence. We chose KCL (Kyoto Common
Lisp)[1] and TF/Prolog' because porting those programming
languages to the intended machine is easy and their quality is
high. KCL and IF/Prolog are written in C language and run
on various workstations based on the Motorola 68020 and
68030. Icon uses the Motorola 68030. Also all built-in
predicates of IF/Prolog are the same as described in the
textbook [2]. Also full screen editor EZ [3] is supported.

An embedded controller specifically designed for artificial
intelligence applications needs a user-friendly operating
system which supports storage, retrieval, viewing,
manipulation and communication of knowledge. Operating

} 1F/Prolog is a trade mark of InterFace Computer GmbH.

systems tend to be intricate and intractable. The cost of
commercial operating systems is increasing faster than the
cost of hardware. However, controller designers desire to
modify operating systems for specific applications. The
operating system of Icon provides easy-to-use tools suited
for artificial intelligence applications.

The characteristics of the operating system are that it
employs threads and tasks for realizing lightweight processes
[4], and use the mutex and the conditional variables for
synchronization. And interprocess communication facility
using ports is provided. This operating system supports real-
time processing which is necessary in the embedded
controller. The operating system is written in a programming
language gec.

2. System Organization

We chose an MC68030 based CPU board providing as much
as 4Mbyte RAM and 4Mbyte EPROM for Icon. The board is
build for the VMEbus/IEEE 1014 standard. An earlier version
of Icon was an MC68020 based machine. It was called
SLIM]5]. We chose FORCE Computers’ VMEbus products
[6] because it supports a large amount of EPROM required
for storing KCL and 1F/Prolog. Icon supports KCL but do
not support IF/Prolog now. However, SLIM supports
1F/Prolog®.

The applications of embedded controller are an intelligent
process control, an expert machine and a diagnostic and/or
maintenance machine for factories. Icon is used in industry.
Typical application of Icon is described in section 4. Figure
1 shows [con.

3. Operating System
The operating system is intended for control process
applications. The operating system has several important
features:

+ Lightweight processes using threads,

« Efficient interprocess communication primitives,

« Minimal kernel,

« Openness,

« Flexible control flow,

« ROMable kernel,

« UNIX compatible interface,

« Real-time processing.

e
We have a plan to port [F/Prolog.

Figure 1. Icon system.

Theta {(Threads and Tasks) is the name of the operating
system built to support a distributed and parallel computing
environment. Mach has been designed for muitiprocessors
and workstations [4]. However, Theta has been implemented
for small and embedded system.

Principal features of Theta are that most of the facilities in

the conventional kerne! functions are managed by system’

servers. Clients make requests for services by remote
procedure calls. System servers emulate UNIX system calls.
So user can call servers without software interrupt.

3.1 Tasks and threads

Task is an abstraction object for dealing with computer
resources, i.c., /O, CPU, memory, ports for interprocess
communication, and threads. All threads within a task share
the resources and a single address space. Conventional
process corresponds to a single thread within a task.
Therefore, the Theta scheduler maintzins threads. However,
the threads are scheduled by the user. Exceptions are also
issued to independent threads. Thread data structure contains
the thread descriptor. The thread descriptor contains a less
amount of processor state information than that of the process
of the conventional operating system. Lightweight processes
can be realized by the low overhead of context switch and by
sharing a single address space.

The states which a thread assumes are execute, ready and
blocked. The threads in ready state are kept on the rcady
queue. The thread blocks if it is waiting a resource or
message. Relinquishment of the CPU may be initiated either
by the thread itself issuing thread_reschedule() or by two
another occasions. First occasion is by interval timer. Second
occasion is by waiting for interprocess communication. for
cach priority level the ready queue is maintained.

3.1.1 Library functions of tasks and threads

The following primitives handle the management of tasks
and threads.

task_create,
task_detach,
task_self,
task_join,
thread_priority,
thread_dctach,
thread_exit,
thread_kill,
thread_fork,
thread_join,

1H00

thread_name,
thread_self,
thread_reschedule.

3. 2 Interprocess communication

Interprocess communication of Theta means task to task
communication. All threads executing within a task are
equally eligible to communicate with other threads in other
tasks. Intraprocess communication is usually done cheaply
using shared memory within task.

Communication is based on message passing mechanisms.
Messages are not directed to the task but to a port. Two tasks
which want to communicate each other obtain a port with the
same port identification. A sender may send message to the
pori, and receiver may receive the message through the port.
A port is a data structure consisting of a message queue, a
queue for blocked threads waiting the messages, and
management information for message transmission.

A fixed-Tength 20 bytes data is employed as a message.

Only nonblocking communication is implemented. Therefore,
the sending threcad does not block, however, the receiving
thread blocks if there is no message.
Sending a message is performed by issuing msg_send()
operation. The sender does not block even if receiving thread
does not exist. Message sent by the sender is entered into the
message queue associated with the port. Receipt of a message
is done by msg_receive(). If there is no message in the queue
when a thread issues a receive operation, then it blocks and is
entered into the waiting queue associated with the port.
Blocked thread may resume execution when a sender put a
message into the message queue.

Blocked communication may be realized if rpc (remote
procedure call) operation is used. A client issues msg_tpc() to
the server and followed by the receive operation and waits for
receiving reply from the server. The server issues receive
operation to receive message from the client, and issues reply
operation.
of

3.2.1 Library functions

communication

interprocess

The eight library functions are provided for interprocess
communication.

msg_rpc,
msg_rpc_adr,
msg_send,
msg_send_adr,
msg_receive,

msg_reply,
task_port,
thread_port.

3.3 Synchronization

Mechanisms for synchronization of threads concurrently
accessing shared data and resources are implemented by
combination of mutex and condition variables [7, 8, 9].

3.3.1 Mutex

Mutex is an only facility doing mutual exclusion in Theta.
Mutex_lock() returns immediately upon locking the mutex. If
the mutex has already been locked by some other thread, the
thread relinquishes the CPU. The thread is returned to the end
of queue to be serviced at a later time. When the thread
acquires the CPU again, it tries to lock the mutex. This
continues until it locks the mutex. So this busy-waiting
phenomena is usually called spin-lock.

The following primitives to handle the mutex are supported
in Theta.

mutex_lock,
mutex_unlock,
mutex_allocate,
mutex_deallocate.

3.3.2 Condition variable

Sometimes threads are captured by a mutex and may keep
staying in spin-lock state for long time. Condition variable
can help to release such the threads. Suppose a thread tries to
lock the mutex to access shared data or resources. If it cannot
access and executes condition_wait(), then it unlocks the
mutex and blocks itself. This means that the thread is placed
at the back of the queue associated with the condition
variable. If other thread issues condition_signal(}, then one of
the thread blocked is unblocked.

The five primitives concerning the condition variable are
provided.

condition_wait,
condition_signal,
condition_broadcast,
condition_allocate,
condition_deallocate.

3.4 System servers

Most facilities within the kernel of the conventional
operating system are implemented by system servers in
Theta. Only remaining function is a dispatcher which
performs a context switch. Client sends a message to the
system server. The most outstanding feature of Theta is that
even the scheduler is realized by a system server.

Thus minimal kernel may be realized. This makes it easy to
prepare schedulers as users need. Also interrupt disable time
is only while dispatcher is running. So it minimizes the time
of disabling interrupt. This plays a crucial role in realizing
realtime operating system.

Followings are brief illustrations of system servers. Figure
2 shows the relationship of the kernel and the system servers.

3.4.1 Memory server

Memory server manages the memory allocation and
reclamation of the memory.

3.4.2 Task server

Task server is involved in creation and termination of tasks
and threads. The thread creation is required to prepare pre-

@ thread

@ ! thread

kernel

thread_reschedule()

cantext
switch

scheduling
server

Next thread

interrupt

interval

timer -——— Interprocess Communication

Figure 2. Kernel and system servers.

allocation of memory space. At system startup, several
skeletons of thread descriptor are linked to a free queue in
advance by the memory server. New thread may be created
immediately using the skeleton. Terminated thread descriptor
is effectively linked to the queue.
3.4.3 Port server

The port server provides the services of allocation of a port
and freeing of a port. This port server pre-allocates necessary
skeleton of port in advance.
3.4.4 Name server

Name server maps a name onto an address in that node or
in other node. The addresses are registered in a table.

3.4.5 Input and output server
The operating system of Theta uses the concept of streams
to describe the I/O functions [10, 11]. The scheme of streams
provides a unified treatment of input and output operations.
The characteristics of the streams are as follows:

+ Modularity and flexibility in input and output
operations,

+ Uniform treatment of I/O operations,

» Device independence,

« Avoidance of errors in operation of devices,

+ Sharing of devices,

« Transparency and virtual devices.

The input output operations supported in the Theta
operating system are open, read, write, close, seek and ioctl.
3.4.6 File management server

The file management server of Theta deals with two kinds
of jobs. One is the virtual file system using a common

memory. The second is the file server which enables the
UNIX machine to be a file server of Theta. Path names of
files defined in the Theta operating system are shown in Table
1.

pathname device name
d:tty0 console 0

d:ttyl console 1

d:tty2 console 2

d:aux serial /O
u:filename UNIX file server
r:filename common memory

Table 1. Path names.
3.4.7 Scheduling server

The scheduler of the Theta operating system is realized by
a thread which manages the ready queue. Kernel issues alert
to invoke the scheduler to make it obtain the first thread in
this queue. Return value of the scheduling server is the next
thread to activate.

3.5 Exception handling

Two kinds of exception handling primitives are prepared.
One is UNIX-like signal and the other is alert. Alert is used to
make an attention to a thread which is ready to accept it.
While a signal is used to interrupt any thread whether the
thread likes it or not. Alert is used in events handling,
cancellation of processing, and exception handling. Signal is
used to monitor and debug a process.

3.5.1 Alert

The thread which issues alert_wait unlocks the mutex and
blocks until other thread alerts it. If it is awakened by
condition_signal() or condition_broadcast(), it locks the
mutex and returns 0. If it is awakened by alert() or
alert_broadcast(), it locks the mutex and returns type number
of alert.

3.5.2 Signal

Signal is a facility for monitoring and debugging for
parallel and distributed programming environment. It is
implemented as a special alert. A thread accepts a signal only
when it unlocks the mutex or when it changes its state from
executing to ready after executing in a time quantum. This is
treated when the dispatcher starts in the kernel.

Signal affects the thread in two ways. One is to kill the
thread and related threads immediately after signal is sent.
The other is to suspend the thread. The thread which issues
the signal checks the return value of signal.

Using alert and signal primitives flexible control flow of
concurrent programming may be described.

3.5.3 Library functions of exception handling

The five exception handling primitives are provided in
Theta.

alert,

test_alert,
alert_wait,
test_alert,
alert_broadcast,
signal.

4. Application

1402

In this section we describe the application of Theta operating
system.’

4.1 An intelligent process monitor

In several plants, the process monitoring depends on
human skill of well trained operators because of its
complexity. For example, a furnace process, a mixing
process and a fermentation process are still manipulated by
human operators. The goal of intelligent monitoring is to
detect the process and decide control operation by obtaining
the required knowledge from a human expert. Human
intelligence is based on subjective and experimental
understanding about the process. Generally speaking, it is
difficult to describe the whole mechanism of such a complex
process as a mathematical model. Here, we have introduced a
concept of “Intelligent Process Monitor”. It is defined as an
integration of the process monitor, the expert system and the
man-machine interface.

The process monitor is a systematized equipment which
displays the process feature, detects the status and stores data
for standardization. The Dough monitor is a product as a
typical process monitor. The expert system utilizes distributed
knowledge base model and has the proper structure for rapid
inference for process monitoring. The man-machine interface
provides the interactive operation to store knowledge through
the system utilization. In order to realize the intelligent
process monitor, we have to develop a system, which
supports concurrent execution of multiple tasks. We
developed so-called “The Dough Manager” , an integrated
process monitor for the dough mixing in a bakery plant,
utilizing the basic facilities of the Theta.*

4.2 The outline of Dough Monitor

The Dough Monitor is now utilized in major bakery
industries in Japan to standardize and manage the dough
mixing process. The Dough Monitor consists of micro
processor, IC memories, sensor base inputs and a graphic
display unit. The Monitor is connected to the dough mixer
driving motor through an electric power sensor, and the
significant feature of this monitor is that it is realized by
ROM. This monitor presents process status transition in a
trend curve combined with an amplitude pattern. The monitor
detects the process status by making a comparison with a
standard trend and amplitude pattern previously defined in the
monitor. Furthermore, the monitor shows the end point of
mixing and stops the mixer by a pre-defined power
consumption criterion. These criteria for the mixing are easily
defined by an operator whenever he makes certain proper
mixing.

4.3 The distributed expert shell on Theta

We utilized a distributed expert shell, ESPARON, which
incorporates distributed problem solving agents. Each agent
model consists of three parts, data part, rule part and metarule
part. ESPARON has been applied in many problem solving
system developments. ESPARON is usually realized on
MS/DOS personal computer or UNIX work station. We also
developed ESPARON/Theta, expert shell executable on
Icon. It is compatible to other ESPARON, so we can
develop the knowledge base model on a personal computer
or a workstation for ESPARON/Theta.

4.4 Dough Manager implementation on Theta

Figure 3 describes an implementation of the Dough

This section is written in cooperation with S. Inabayashi, System
Sougou Kaihatsu Co. Ltd. of Japan.
* Dough Manager utilized an early version of Theta which is a message
passing based operating systen.

[nterprocess
Commurnicauon Manager

N

i External Events

* Process

| | Real-time Expert System on ESPARON
@ Agent-2)

: ‘i\

|

|

!

I

i

Dough Monitor

Monitoring
* Displaying

0 i
Man-machine | !
Intertace ‘ ‘

* Menu

tGuxdzmcc J i
\

Windows Server

pa

! 7
A} /
[l
—
Results of [—Tqucm 4

‘ ‘ Inference Process Monitoring

Figure 3. Dough Manager on Icon.

Doygh Manager on Icon

Manager on Icon. The features of the Dought Manager are
described as follows.

+ The Theta operating system has been ported to the
VMEbus based CPU board so that we may develop
various combinations of functions depending on the
purpose of the system.

+ An A/D converter board and a CRT control board are
connected with the CPU board through the VMEbus.

» On the Theta operating system, three concurrent
tasks are defined. These are the dough monitor task,
the expert system task, and the man-machine interface
task.

+ In the expert system task, there are four agent models

BNo|HNo| SIZE |EL.POWER | TOTAL POWER | MIX.TIME
8| 1| 6kg 720w 35.2wh | 744
1500
100%

10Min
[2/20 11:59

Figure 4. Graphic image for process monitoring.

of ESPARON. These are the “Watch-man”, the
“Measure-man”, the “Dough-master”, and the
“Reporter”.

+ Through the multi-window display, user may monitor
the process status and instruct order to the system using
a mouse or a keyboard operation.

4.5 Behavior of the system and its evaluation.

When the mixer is started, the dough monitor task makes
the graphic image for process monitoring as shown in Figure
4. The dough monitor task detects and sends data to the
expert system task. The expert system task diagnoses the
process status. The Watch-man agent monitors the mixing
process data and decides whether abnormal status happens or
not, and sends a message to the other agent to get opinion
from expert knowledge. The Measure-man agent detects
abpormal measuring precisely. And, the Dough-master agent
makes diagnostic inference and presents guidance to recover
from an abnormal status. The Reporter agent makes some
presentation to explain opinions from other agents. The man-
machine interface task drives the CRT controller through
VMEbus, and manipulates the multi windows display fo- the
purpose to communicate with a human operator interactively.

This example shows that we can implement such an
integrated multiple tasks application system successfully on
single CPU board supported by Theta. The dough monitor
task scans the mixing process data every 100 milliseconds.
The expert system task makes inferences every 3 seconds to
make advice and control the process. The operator can
communicate with the system througn the man-machine
interface task whenever he wants. The system was
demonstrated at an exhibition, POWDERTEC JAPAN 90 in
September 1990.

5. Conclusion

The design objectives of Icon were twofold. First, we
proposed a design method to make an embedded intelligent
controller without degrading the performance compared with
a commercial workstation. Second, we implemented a small
but open operating system which supports Common Lisp,
Prolog and real-time processing.

Experiments on the performance measurements measured
on Icon and the commercial workstations show that Icon is
comparable 1o the off-the-shelf workstations.

We chose a commercial VMEbus based computer as Icon.
However, a large amount of RAM and EPROM of it are
effectively used to increase the performance of the machine.

Conventional operating systems do not support such a
machine. In this case. Theta provides a major contribution.

References

[1] T. Yuasa and M. Hagiya, “Kyoto Common Lisp
Report,” Teikoku Insatsu Inc. , 1985.

[2] W.F. Clocksin and C. S. Mellish, “Programming in
Prolog,” Second edition, Springer-Verlag, 1984.

[3] T.Matsui, “EZ Manual,” Electrotechnical Laboratory,
Research Memorandum, ETL-RM-21J, 1985. (in
Japanese)

[4] M. Accetta, et al., “Mach: A New Kemel Foundation
for UNIX Development,” Proceedings of the Summer
1986 USENIX Conference, pp. 93-112, 1986.

[5] H. Shirakawa, H. Ogawa and M. Fujiwara, “A
Dedicated Small Computer for Artificial Intelligence,”
Proceedings of the 1990 ACM SIGSMALL/PC
Symposium on Small Systems, pp.191-198, 1990.

[6] “FORCE SYS68k/CPU-30 User's Manual,” FORCE
COMPUTERS Inc/Gmbh, 1990.

{71 A. Birrell, “An Introduction to Programming with
Threads,” Research Report 35, Digital Equipment
Corporation Systems Research Center, 1989.

(8] A. Birrell, J. Guttag, J. Horning and R. Levin,
“Synchronization Primitives for Multiprocessor: Formal
Specification,” Proceedings of the 11th Symposium on
Operating Systems Principles, pp.94-102, 1987.

[9] E. C. Cooper, “C Threads,” Technical Report CMU-
CS-88-154, Computer Science Department, Camegie
Mellon University, 1988.

[10] J. E. Stoy and C. Strachey, “OS6 - an Experimental
Operating System for a Small Computer,” Computer
Journal, Vol. 15, No. 2 and 3, May and August, 1972.

[11] D.M. Ritchie, “A Stream Input Output System,” AT&T
Bell Laboratories Technical Journal, Vol. 63, No. 3,
Part 2, pp. 1897-1910, Oct., 1984.

1404

