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Abstract

In this paper, we propose a new type of decentral-
ized learning automata for the conirol of finite state
Markov chains with unknown transition probabilities and
rewards. In our scheme a f-type lsarning automaton
is associated with each state in which two or more ac-
tions{desisions) are available. In this decentralized learn-
ing automata system, each learning automaton operates,
requiring only local information, to improve its perfor-
mance under local environment. From simulation results,
it is shown that the decentralized learning antomata will
converge to the optimal policy that produces the most
highly total expected reward with discounting in all ini-
tiall states.

1

Introduction

Stochastic learning automaton, which opetates in random
enviroments, have been extensively studied over past two
decades[1]. We have presented a new family of learning
automata termed (-type , which indicates the property
of conditional optimality under some stationary random
enviroments{2]. Recently the major arguments on both
the a-type and the #-type learning automata are focused
on the decision makers which interact in a decentral-
ized manner to overcome the dimensional difficulty[1)[3].
For example, the decentralized control by using the a-
type learning automata in computer and communication
network has been demonstrated both from the practical
paint of view of convergence speed and computational
efficiency[1]. We also have proposed a construction of de-
centralized learning systems by using the §-type learning
automata to some probabilistic optimization problems,
e.g. the shortest path problem in stochastic networks
and the learning control of unknown Markov chains[4][5].
The learning control of finite Markov chains with un-
known dynamics is widely applicable. The Markov de-
cision process arises when state transitions generate re-
wards which depend upon decisions taken in some or all
states. In case that prior dynamics of the chain are pre-
viously known, some methods, e.g. Howard’s policy iter-
ation method and so on, are effective to find the optimal
policy which produces the most highly total reward in
all initial states. However, in many real applications, we
often have to consider the Markav chains with unknown
dynamics, hence the learning control problem arises.
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In general, this type of control has dimensional dif-
ficulty. That is, the computation becomes burdensome
when the number of states is very large. Further, an
adaptive control problem results from the ignorance of
both transition probabilities and corresponding rewards
associated with various actions. The adaptive control ap-
poach, however, needs the estimation of those many pa-
rameters. One effective approach to this problem is to use
learning automata as decentralized decision makers[7].

In this paper, we show how to construct the decentral-
ized system of the 8-type learning automata and apply
it to the learning control of finite Markov chains with
unknown transition probabilities and rewards. In our
scheme, each component, a S-type learning automaton,
of the decentralized system requires only the local infor-
mation without a coordinator. At this point of view, this
system is different from the known decentralized system
by using a-type learning automata. Finally, some simu-
lation results are presented.
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Fig.1 Automaton-Environment Configuration

In this study, we use the learning antomaton termed
B-type with the reinforcement scheme which is similar to
the Baysian learning scheme. In this context, we term the
learning automaton which is surveyed by K.S.Narendra
et al.[l] "a-type”. A learning automaton is a feedback
system connecting an automaton , which chooses an ac-
tion at each time, and an environment, which produces



responses to those actions (See Fig.1). We describe briefly
the single 4-type learning automaton model as follows.

1) Environment

In general, a random environment model has an
action oft) € o = {o,0,-+-,a,} as its input
,where « is the action set of the learning automa-
ton(r:action number), and a random variable z(¢) €
X = {z,Z2,- -, Ta} as its response , where X is the
response set (n:response number). Here, we assume
that X is a set of distinct real numbers which in-
dicate the degrees of success i.e. |, the rewards and
z(t) obeys unknown probability distribution P: on
X corresponding to an action «; € a. The random
environment in which learning automaton operates
is specified by a collection of r unknown probability
distributions B = (pi1, pi2, -, Pin) (i=1,2,...,1), which
satisfy the following conditions;

0 < pij = p,[z(t) = z5la(t) = a;] £ 1,

and

n

S opi; =1, for all ij.

=t

In the case that 2<n< oo and the probability dis-
tributions Pi(i=1,2,...,r) are stationary, the environ-
ment is called as Q-model stationary environment.

2) A (-type learning automaton
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Fig.2 Construction of §-Type Learning Automaton

A f-type learning automaton .4 consists of r internal
automata (See Fig.2) and each internal automaton
A; corresponds to an action @; € a. An internal
automaton A; is described by a 4-tuple <X, 2,A;(¢),
T>, where Q = {wy,wy, ..., wn, } is the set of its states
(m:state number), Ai(2) = (Ai(2), Aia(2), .., Mim(t)) is
the state probability vector at time t and T is the
reinforcement scheme defined as below. The state
probability vector satisfies the following conditions,

0 M(0) L1,
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and

m

Z A,‘j(i) = l, for all I,J

j=1

For each automaton A;, we assign a real number g,
to each state w,. These numbers g (k=1,2,...,m) are
taken to satisfy the following conditions:

X<y < plp <-o- <y <K,

x =min(z;) and %= max(z;).

The interaction between a single G-type learning au-
tomaton and a Q-model stationary environment is
stated as follows.

At the start time t=0, state probability vectors
Ai(0)(i=1,2,...,1) are set as

Ai(0) = Aip(0) = - - = Aim(0) = % for alli. (1)

At time t, each internal automaton .A; chooses its
state wy; € 0 randomly according to its state prob-
ability vector A;(¢) and generates the output p;(t) =
pri- The B-type learning automaton chooses an ac-
tion a(t) = a; € a corresponding to the internal au-
tomaton A; which generates the most highly output
and determines p(f) = p;(¢) as the output. Thus,
the B-type learning automaton performs action a(¢)
to the environment and subsequently receives the re-
ward z(t) as the environment response corresponding
to a(t). So the state probability vector A;(t) of the
internal automaton .4; corresponding to the chosen
action a(?) = o; is updated by

Mt +1) = T((1), 2(1). (2)

In such scheme, the f-type learning automaton
changes its probabilistic structure in order to adjust
itself to the environment in iterative manner.

3) Reinforcement scheme

The reinforcement scheme T is defined as follows;

Xt + 1) = GO0 (1 — ) O,
k=1,2,..,n  (3)

where ¢ is the normalizing constant, £ is the parame-
ter which dominates the convergence speed and z'(t)
is the normalized environment response, which lies in
the interval [0,1], defined by

2= 202 @

Particularly when 6 is equal to 1, the scheme is the
same form as the Baysian learning scheme.



Here, let ¢; be the expected reward under an action
o; € a, which is defined as

i = Blx(0)latt) = ) = Y- pizs. (5)

The value ¢; is the evaluation of the action o; and we
assume that a unique maximum of ¢;(i=1,2,...,r) exists.
The ultimate goal of the learning automaton is to find
the action that produces the most highly expected reward
in iterative manner under the unknown random environ-
ment.

In evaluating the performance of the learning automa-
ton, the concepts of optimality and e-optimality are very
important. Optimality means that a learning automaton
chooses the optimal action or actions from its action set
with probability one as time goes infinity and e-optimality
is a weaker concept than the optimality.

By using reinforcement scheme(3), the §-type learn-
ing automaton is optimal under certain condition on the
random environment, and the output yx;(t) of each inter-
nal automaton A; converges asymptotically to the value
which is the nearest to the expected reward ¢;. Hence
the output u(t) of the learning automaton approaches
asymptotically to the value which is the nearest to the
expected reward under the optimal action.

Generally, the action number of the learning automa-
ton is very large and the single learning automaton model
is not appropriate neither from the practical point nor
view of the convergence speed and computational effi-
ciency. This 1s why that the major arguments on the
{earning automata are focused on the decision makers
which interact in a decentralized fashion. Decentralized
learning automata consists of a large number of learn-
ing auotmata which are interconnected and each learning
automaton has only a few actions.

3 Learning control of unknown Markov

chains

The control of Markov chains can be stated as follows.

Let S = {51, s3,..., 55} (¥ < o) be the state space of a
finite Markov chain and D' = {di, d}, ..., d% }(ri < 00) be
the finite set of decisions available in state s; € S. At each
time t=1,2,..., the system of the Markov chain consists in
one state of the state space S, and whenever the system
consists in state s; one decision df, is always chosen from
D'. Suppose that the decision d}, € D' is chosen in the
state s; at time t. Then the system goes from s; to 55
according to a transition probability q,"]' Associated with
the state transition from s; to s;, a reward 1‘5‘ is generated
, where

0<gf <1,2 45 =1
J

and

ir,’;[ < oo, for all i, j, k;
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The goal of the control of finite Markov chains is to
choose a policy which maximises the criterion of the total
expected reward that will be generated from the present
time. In the criterion, the future reward is assumed to be
discounted per unit time by a discount factor 3. Here, the
policy consisting of one action at every state is denoted
by N-dimensional vector = (d}, dy, -- ~,d;;N) € D, where
D=D'®@D*® - ® DV is the set of plicies.

If the system is in state s; at the present time, the
criterion under the policy P becomes

Vi(i, P) = i + 8 3 a5 V(i P)-

1

(6)

The quantity r™ is the expected reward from a single
transition from state s; under decision dj , thus s
obtained as

rf= D gy o)
J

It P = (d,", ", -, dp,") is the optimal policy that

maximises Vp(7, P) for each i, P~ satisfies the following

condition;

Vs(i, P7) > V54, P)for all i, every P™ # P. (8)

In order to find the optimal policy P~, some effective
methods, e.g. the Howard’s policy iteration method€]
and so on, have been presented if the prior dynamics of
the chain are previously known. However, in the practical
cases, we often have to consider the Markov chains with
unknown dynamics, e.g. transition probabilities and re-
wards. In this case, since the unknown information abcait
the system must be learned for control decision, the learn
ing control problems arise. And this type of control faces
several difficulties with ragard to practical application.

First, in centralized approaches, the computational
cost of the scheme increases dramatically with increas-
ing N even if full information was previously given. In
this respect, decentralization is highly desirable.

Second, in the case that the prior dynamics, transition
probabilities and rewards, are unknown, the optimal pol-
icy cannnot be found off-line even if the computational
problem can be overcome. Hence, the adaptive prob-
lems that needs the estimation of unknown parameters
arise. One effective approach to the learning control of
unknown Marcov chains is to use learning automata as
decentralized decision makers[7].

4 Decentralized learning automata ap-

proach to the control of unknown Markov

chains

As mentioned in section 3, the contro! scheme of finite
Markov chains with unknown transition probabilities and
rewards is implemented in a decentralized fashion. Re-
cently, we have proposed a construction method of de-
centralized learning systems by using 5-type learning au-
tomata to the shortest path problem in stochastic net-
works, and showen simultaneously the efficiency of the



method through some simulation results. Further, the
method can be easily applied to the learning control of
unkown Markov chains, which is described by the follow-
ing algorithm(See Fig.3).
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Fig.3 Construction of Decentralized Learning Au-
tomata

Algorithm
Stepl. Start:

1) A B-type learning automaton as decentralized deci-
sion maker is associated with each state in which
two or more decisions are available and operates only
when the system of the Markov chain consists in that
state. At state s;, the learning automaton is de-
noted by A;, in which the action set and the output
are defind as of = {a‘;,aé,u.,ai.} and g;(¢) respec-
tively. In A, each internal automaton of A; is de-
noted by A (k=1,2,...,r;), in which output at time
t is denoted by s (?). And each eleruent a‘; of of
corresponds to the decision d, € D'.

2} The initial state(at the time t=0) of the Markov chain
is set arbitrary.

Step2. Iterate:

3} It is assumed that the Markov chain consists in the
state &; at the present time t. The automaton A;
chooses its action a;(f) = of, € o and generates the
output g;(?) , that is this operation is equivalent to
choosing the decision di from D*. This results in a
transition from the state s; to a new state s; accord-
ing to the transition probability qf}‘ and a generation
of the reward rt,»‘.

4) It is assumed that ,at the next time t+1, the state
consists in s; and A; chooses an action{decision)
from its action set(decision set) and generates the
output p;{t + 1). A transition from the state s; oc-
curs.

5) Then, the response z;(f) to the learning automaton
A, is given by
I‘(f):r?j+ﬂ'ﬂj(t+]). (9)

6)t—t+1

Z
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In above algorithm, the iteration process consists of 3),
4), 5)and 6), but time t elapses in serial order with ev-
ery iteration. The proposed decentralized learning au-
tomata select the optimal policy under this algorithm as
time goes infinity. Thus, the decentralized learning au-
tomata can be represented by the simple network of sev-
eral learning automata. Fach component of the decen-
tralized automata, as the decentralized decision maker,
operates without the coordinator and needs only the lo-
cal information to improve its performance under local
environment. From this point of view, this decentralized
learning automata is desirable as the autonomous decen-
tralized system comparing with the decentralized system
by using a-type learning automata.

Generally, there are two classifications in decentralized
learning automataf1].

(a)Synchronous Models

In this class of models, each interconnected learning
auotmaton of decentralized automata chooses an ac-
tion at the same time and subsequently receives a
environment response.

(b)Sequential Models

In contrary, only one learning automaton chooses an
action at a time t. Then the chosen action deter-
mines who acts at next time and the response of
local environment is generated.

From above classifications, our scheme is classified into
7Sequential Models” according to the structure of its in-
terconnection.

5

Simulation results

In this chapter, we introduce the evaluation function of
the behavior of the decentralized learning automata de-
scribed in section 4.

First, the evaluation function fr(¢) is defined as

fel) = 5 3 Na ),

1<T<eo0,t>T (10)

where N;p(t) indicates how often the decision d,* € P*
is chosen by the learning automaton A; at state s; in the
period from time t-T to time t. Obviously f7(¢) lies in the
interval [0,1] and indicates the percentage of the numbers
of the optimal choises in the period. If fr(¢) converges
asymptotically to 1| the decentralized learning automata
will become to select the optimal policy from D, therefore
fr(t) can evaluate the collective behavior of decentralized
learning automata on examination about the optimality.

Second, we introduce the evaluation function ep(?) of
the estimation property of the learning automata. In our
scheme, it is hard to analyse theoretically the asymptotic
collective behavior of the estimation. However, if the
decentralized learning automata select the optimal pol-
icy on basis of accurate estimation of the total expected



rewards with discounting, the output of each learning au-
tomaton A; converges asymptotically to V3(7, P*). Con-
sequently, the output of each internal automaton will con-
verge to certain value, which appears at last stage in the
Howard’s policy iteration method. er(t) is defined by

_ T () — V(i ki P7)|
ET(i) = ~
Yin | Veli, kiP)|
1<T<o0,t2>2T (11)
In (11), p%, denotes the average of the output uix(f)

of internal automaton A, in the period from time t-T
to time t, Vs(i, k; P7) is given by
N.(12)

Va(i, ki P7) = r"‘+ﬁ2q S Va(m, P),i=1,2,.

Note that V,;(1 kP comsxdes with V(i, P7) only if
d is equal to di.” € P".

In the Howard s policy iteration method, the optimal
policy P~ is obtained in the last stage. So, in the last
stage, the most highly total expected reward with dis-
counting is given by

Vﬂ(il P) =
i=12,..

rri?.x{V,g(i, kP

SNk=1,2,0,1 (13)
In the simulation works, Va(i,k;P") is previously ob-
tained off-line by the Howard’s policy iteration method.
For computer simulation of implementing our scheme
described in sectin 4, we provide two models specified in
Table 1 and Table II. Table I describes the most simplest
model of the Markov chain with two states, and Table 1I

describes the Markov chain with five states.
In the former, the number of the policies denoted by

|D}is 22 = 4 and the parameter values used in producing
results Fig.4 are §=0.3, m=100, x=-100.0, £=100.0 and
6=1.

In the later, the number of the policies is 3° = 243, and
the parameter values used in producing results Fig.5 are
B=0.8, m=100, ¥=-10.0, x=10.0 and §=1.

Table I
state | decision | transiton probabilities rewards
i k X
i d
s k i Ty
>J 1 2 1 2
1 0.50 0.59 ) 3
1
2 §.80 0.20 1 4
1 0.40 9.60 3 -1
2 | [
l 2 | .70 0.30 1 -18
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Table II

state | decision transiton probabilities rewards

s 4y q)i‘ i t j
-8 |1 2 3 4 s |tz s 4 s
1 0.1 0.2 6.2 0.2 0.3 | L -2 -4 -1 3
1 2 0.2 0.2 0.2 0.2 0.2 -2 -1 2 8 -1
3 0.1 0.1 0.1 0.3 6.4 -3 8 -1 -2 4
1 0.1 0.1 0.2 9.3 0.3 T4 1 -2 -8
2 2 ¢.1 0.1 0.6 0.1 0.1 -3 -2 1 -2 5
3 0.1 6.5 0.2 0.1 6.t 3 -1 -3 -1 1)
1 0.1 0.4 0.2 0.2 0.1 3 1 2 4 -4
3 2 6.3 0.2 0.2 0.2 0.1 3 0 -1 -3 7
3 0.3 0.2 0.1 0.1 0.3 -8 1 -2 4 0
i 9.2 0.5 0.1 0.1 0.1 3 -4 3 1 -8
4 2 0.3 6.1 ¢.1 0.4 0.1 3 2 -1 -3 -5
3 0.2 0.3 0.3 0.1 0.1 4 1 -8 6 2
1 0.2 0.2 0.2 0.2 0.2 2 6 2 -t 3
5 2 0.2 0.3 0.2 0.1 0.2 -3 1 -3 4 -4
3 0.1 ¢.4 0.2 0.1 0.2 L-f} 3 2 -1 -3

Jr{t), ex(t)

0.5

0.0 L
1] 4000
time t

Fig.4 Vartation curves both of fy(t) and ez (#}{ Table I)

A
2000

101

fr(t) ex(t)

.0 L L
o 0 4000
time t

Fig.5 Variation curves both of fr(t) and er(t)(Table II)

i,
2000

Fig.4 and Fig.5 show that both fr(t) and er(t) are av-
erages of performance over the five runs. At the start of
each run, we supplied a different seed value to the ran-
dom number generator for both the state probabilities of
learning automata and the transition probabilities of the
Markov chain. Except for the random number generator
seeds, identical parameter values are used for all runs. In



Fig.4 and Fig.5, it is shown that the proposed decentral-
ized learning automata select the optimal policy in iter-
ative manner, since fr(¢) converges asymptotically to 1.
And each er(t) in those figures converges asymptotically
to 0. Those results mean that each learning automaton
controls the Markov chain on the basis of appropriate es-
timation of the total expected rewards which appear at
the last stage in the Howard’s policy iteration method.

6

Conclusion

An effective approach using the decentralized automata
in decentralized fashion for the control of finite Markov
chain with unknown transition probabilities and rewards
has been proposed.

We have also examined the asymptotic properties of
this scheme through two functions, fr(1) and er(t). Qur
scheme has the following characteristics:

(i) The decentralized system shown in section 4 repre-
sentes a simple network of several #-type learning
automata.

(ii) The scheme is implemented without a coordinator.
Each conponent operates depending upon only local
information that is the output from one of the con-
nected compornents in the network, and its control
is localized. This fact motivates that our scheme is
more desirable than the decentralized system using
a-type learning automata with a coordinator. Be-
cause such a coordinator leads to the centralization
of information.

(iii) Each internal automaton Ay, (k;=1,2,...,r;) of learn-
ing automaton A ; estimates appropriately the total
expected reward Vj(i, k; P*) that appears at the last
stage in the Howard’s policy iteration method.
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The theoretic proof on the optimality of our scheme is
still unkown, since the structure of the B-type learning
automata that interact in a decentralized fashion for this
problem is quite complicated. However, we have shown
that, for the case of both Table I and Table I represented
in section 5, satisfactory optimal control can be achieved
using our scheme.
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