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Abstract

This paper proposes a robust on—line fault detection
method for uncertain systems. It is based on the fault
detection method [10] accounting for modelling errors,
which is shown to have superior performance over
traditional methods but has some computational probleams
so that it ls hard to be applied to on-line problenms.
The proposed method in this paper is an on~line version
of the fault detection method suggested in [10]. Thus
the method has the same detection performance robust to
model uncertainties as that of {10]. Moreover, its
computational burden is shown to be considerably
lessened so that it is applicable to on-line fault
detection problems.

I. INTRODUCTION

As automatic control systems become more and more
complex and expensive, the fault detection method is
essential for improving the supervision and monitoring
as part of the overall process control especially in
advanced processes with the highest demands on
reliability and safety, e.g. aircrafts and nuclear
power plants. In this context the fault is understood
as any kind of abnormal change in the system
characteristics that leads to an undesired performance
in the system under consideration. If a fault occured
it has to be detected as early as possible, which is
called as a fault detection. This may be followed by
isolating the source of it, namely a fault diagnosis.
The next step would be a fault ewaluation that means
characterizing the extent and significance of the
fault. And according to this assessment, some proper
actions could be taken.

Previously supervision of technical processes was
restricted to checking directly measurable variables
for upward or downward transgression of fixed limits or
trends. With the aid of process models, estimation and
decision methods, it is now possible to monitor
nonmeasurable variables like process states, process
parameters and other characteristic quantities related
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to the process. We concentrate on the fault detection
problem based on the estimated parametric models. This
can be done by checking if the estimated parameters are
within a certain tolerance of the normal value.

The fault detection would be straightforward if
exact system models were available and systems were
noise-free. Yet noise affects all real systems and
modelling errors that are by no means avoidable in
practice cause differences between the estimated
parameters even in the absence of faults, which lead to
false alarms. Fault detection methods must be
sensitive to the appearance of faults, but insensitive
(robust) to other changes like noise, modelling errors,
operating polnts, normal signal variations, etc. Even
though robustness issues have been recognized in
several areas including control, estimation and system
identification, robust methods in fault detection have
only been developed lately [1-4].

In recent papers, Weiss[5], Horak[6] and Carlsson
et, al.[7] have presented some fault detection methods
which account for modelling errors. These methods,
however, seem to work fine only on low order noise-free
systems, Although Emami-Naeini et. al.[8] have
suggested a fault detection method for linear systems
having modelling errors and noise, their method is
restricted to the sensor failure detection in ]inear
systems and not suitable for the detection of faults in
plant dynamics and nonlinear systems. Kwon et. al.
[9,10] have proposed a robust fault detection method
for uncertain systems having modelling errors, noise
and nonlinearities. But their method is based on
off-line scheme and so less suitable for on-line
detection of abrupt changes and other applications
where fast on-line decisions are important.

In addition to taking the robustness issue into
consideration, the issue of computational complexity
should be considered in the fault detection problem
since it is closely related with the rapid response to
the occurance of a fault. A distinction is made

between off-line and on-line detection problems ; In
off-line problems the detection is based on
observations over the complete time interval of

interest and in on-line problems a detection decision
must be made at each time moment based on past
observations. From an off~line point of view, multiple



changes may be found by global search ; from an on-line
viewpoint, the changes are assumed to be detected one
after another. The needs in real-time applications
have stimulated the development of an on-line fault
detection method.

In this paper, we are primarily concerned with the
idea of deriving a .practically appealing scheme that
extends the work in [9,10]. The fault detection method
suggested here accounts for the effect of noise and
model mismatch., Modelling errors are depicted by the
additive form and the nominal model denominator is
fixed via prior experiments in order to quantify the
uncertainty bound on the parameter estimation. A
recursive fixed-interval-sliding-window parameter
estimation algorithm with no matrix inversion is
presented to provide methodology for handling the
real-time fault detection. And the on-line counterpart
of the robust fault detection method proposed by Kwon
et. al. [9,10] is suggested.

The layout of this paper is as follows According
to the basic introductory background in Section I, an
efficient parameter estimation algorithm is adopted in
Section 11. Then the on-line fault detection method is
proposed in Section III. In Section IV, the comparison
of computational requirements between the new algorithm
presented here and the existing method [9,10] is done,
which shows the advantages of the new algoritha.
Finally conclusions are in Section V.

IT. SYSTEM DESCRIPTION AND

IDENTIFICATION SCHEME

2.1 System Description

All mathematical models
descriptions for real systems. One can describe the
model uncertainty with additive form of unmodelled
dynamics and measurement noise as shown in Fig. 2.1
[10].

are only approximate

True System Gr = G + Gy

modelling
error measurement
GA noise v
+ +
nominal + +
u — mode! P O—r—>0O—> y
input G output
Fig. 2.1 System description including unmodel led
dynamics and measurement noise [10].
It is asssumed that the true system Gr and the

nominal model G are stable and causal. We also assume
that the measurement noise v is a zero mean white noise
with variance ovZ%.
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The nominal model is taken to be of the form :

B(z~1, & (k),nb)

F(z~1,ns)

G(z-1, 8 (k)) = @2.n

where
B(z-1, @ (k),ns) = bi(k)z=1 + bz(k)z~2 +
..... + bn, (K)z™nb

F(z7i,ne) = 1 + £1271 + F2272 + ...

8(k) = [bi(k) ba(k) ... bn,(K)]T.

+ fn‘.Z-"f

The denominator F(z~1,ns) is to be fixed which can be
determined from a priori information about the system
or by some prior experiments on the parameter
estimation for the system [11]. The output of the
system satisfies

y(k) = Gr(q~Vulk) + v(k)
= G(q )ulk) + GA(q'i)u(k) + v(k)
= B(q~1, 8(k),mp)ur(k) + 77(k) (2.2)

where q~1 denotes a delay operator and

up(k) = ————— u(k) (2.3)

F(q~1,n¢)

nk) = GA(q")u(k) + v(k). (2.4)
2.2 Recursive Parameter Estimation

For the parameter estimation, Eq. (2.2) can be
represented in standard linear regression form as

y(k) = TG (k) + (k) (2.5)
where

é (k) = [ur(k-1) ur(k-2) ..... up(k-np) JT.
The least squares method then gives the estimated
parameters as

6k =[BT D) I-1 DT (k)Y (K) (2.8)
where

$(k) = [¢(k-N+1) S (kN+2) ... $(k)]T 2.7

Y(k) = [y(k-N+1) y(k-N+2) ..... y(k)1T (2.8)
and N is the number of data in the interval of
interest.

Note that the estimator (2.6) is of nonrecursive
form and so unsuitable for on-line applications. A
recursive procedure is required to speed up the above
least squares estimation. This corresponds to finding
the recursive least squares estimate of the current

parameters of the process, based on ‘N’ most recent
observations.
A general form of the recursive least squares

estimate is given for the case of the growing-window
problem as follows [12] :



(k) = 6(k-1) + P~1(k) ¢ (K) [y(K)~$T(k) B (k-1)]
(2.9)

P(k) = A(k) P(k-1) + $(k)pT(k) , (2.10)

where A is the forgetting factor.

The present problem, however, is the fixed-interval-
sliding-window problem and we are constrained to use
only ‘N’ most recent observations for k-N+1<t<k. Since
the oldest data at time t = k-N should have no
influence on the estimate, we need the deletion
procedure to have &a(k-1), Pa(k-1) which suffered the
deletion of (k-N)th data effect from & (k-1) and P(k-1)
in Egqs. (2.9) and (2.10). The basic strategy is
depicted in Fig. 2.2.

8 (k-1
1
N data
r !
(k-N) (k-N+2) .- (k-1) (k+1)
A i 1 i 1 t
(k-N+1) k
L J
N data
!
8 (k)
Fig. 2.2 The basic scheme of the recursive FISW

(fixed-interval-sliding~window) parameter
estimation,

The desired recursive form of fixed-interval-
sliding-window least squares method (FISW-LSM) can be
obtained as follows [13] :

60 = Bak-1) + P1(K) ¢ (K Iy(k)-pT (k) Galk-1)]

where

P(k) = A(K) Pa(k-1) + &(k)¢T(k) (2.1

Bak-1) = [I - P-1{k-1) ¢ (k-N) T (k-N)]-1

16 (k-1) - P-1(k-1) ¢ (k-N) y(k-N)]
(2.12)

Pa(k-1) = A~1(k-1) [P(k-1) - & (k-N)pT(k-N)].
(2.13)

To avoid inverting P(k) at each step, we introduce
P(k) = P-1(k)
Pa(k) = Pa~t(k).

Finally the recursive FISW parameter estimation

achieved without matrix inversion, which has
estimation cycle as follows :

is
an

1. Delete the effect of (k-N)th data from & (k-1) and
P(k-1).

Balk-1)

= {I - P(k-1) $(k-N) [ $ T (k-N)P(k-1) ¢ (k~N)-1]-1
- dT(k-N)} [6(k-1) = P(k-1) & (k-N) y(k-N)]
(2.14a)
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lpd(k—l)

P(k-1) ¢ (k-N) ¢ T (k-N)P(k-1)
= A(k-1)|P(k~1) -

$T(k-N)P(k-1) p(k-N) - 1
(2.14b)

2. Conduct the updating process with new data at t = k.

(k) = Balk-1) + KU y()-$T(k) Galk-1)]

(2.14¢)
where
Pa(k-1) ¢ (k)
K(k) =
A (K)+¢T(k)Pa(k-1) ¢ (k)
P(k) = [I - K(k) ¢T(k)] Patk-1) / A(k)

Assuming the matrix $(k) has full rank for k > N, the

recursively derived estimate &(k) with A = 1
identical to its nonrecursive counterpart
(2.6).

is
in Eq.

Notice that the matrix P(k) is defined only when the
matrix $T(k)P(k) is nonsingular. Since

K
PTRIP(K) = T F(V)ST(L)

tmk=N+1

it follows that $T(K)P(k) is always singular if k is
smaller than N. In order to obtain an initial
condition for P, it is thus necessary to choose k = N
such that ®T(k)P(k) is nonsingular and determine

P(N) = [@T(N)P(N)]-1

6 (M) = PO DTNY(N).

The recursive equations can then be used from k > N
[14].

With respect to the computation time, the proposed
algorithm is more economical than the nonrecursive LSM
with moving window. It is useful in situations where
the system undergoes some abrupt changes and, for data
analysis purposes, one desires to know exactly on which
observations each of the succeeding estimates is based.

2.3 Estimation Error

From Egqs. (2.5) and (2.6) we can derive
following expression for the estimation error :

the

() = 6 - 8Kk = [$TK) DK BT (R)S(K)
(2.15)
where

S(k) = [77(k-N+1) 7(k-N+2) ... 7(k)]T, (2.16)
Using Eq. (2.4) and denoting the impulse response of GA
as {h(+)}, 7(k) can be expressed as

k
7{k) = ¥ wtdhk-t) + v(k) , k=N (2.17)
tak=N+1

assuming that u(t)=0 for t < k-N and h(t)=0 for t < 0.
We obtain the following relationship from (2.186)



S(k) = ¥(k) H(k) +Vv(k) , k=N (2.18)
where
— u(k-N+1) 0 0 -
u(k-N+2) u(k-N+1)
(k) = . . . (2.19)
u(k) u(k-1) -+ u(k-N+1)
H(k) = [h(0) h(1) ... h(N-D)]T
V(k) = [v(k-N+1) v(k-N+2) ... v(K)]T,
Before proceeding we need to say something about the

unmodelled impulse response {h(-)} in Eq. (2.17). It
seems to make no sense to assume this was known since
it would then hardly qualify as the unmodelled
dynamics. So {h(:)} is taken as a stochastic process
here and we assume that a priori knowledge is available
for {h(-)}. This procedure is discussed in detail in
[15] where the term ‘stochastic embedding’ is used to
describe the procedure giving an a priori distribution
to {(h(-)}. In this paper we will simply assume
knowledge of the mean and covarinace function for this

distribution. Given information about the second order
statistics of h and v we can then evaluate
the expected value of the estimation error,
E(A(k)FT(k)}. This is the basis of the fault

detection method to be investigated below.

ITT. FAULT DETECTION METHOD

3.1 Nonrecursive Scheme

A robust fault detection to unmodelled dynamics with
the aid of parameter estimation can be achieved by the
following method which is mainly devoted to in [10].

Suppose that there are two sets of data In and If,
which are nonfaulty data and suspected faulty data

respectively. The estimated parameter & may take
different values in each experiment :

-

We assume that the noises are uncorrelated between the
two experiments.

B ,
6t ,

for data set In
(3.1)
for data set Ir .

The fault detection procedure now amounts to
comparing Sn and &t and to deciding if the observed
changes can be explained satisfactorily in terms of the
effects of noise and/or undermodelling. If not, then
we may conclude that a system fault has occured. The
covariance function of (6n - &) under nonfaulty
condition is used as the measure of the uncertainty due
to noise and undermodelling, which is obtained in the
following result :

Theorem 3.1 [10] : Given two sets of estimated
parameters as in Eq. (3.1) for the underlying system in
Fig. 2.1, the covariance of (fn - &¢) is as follows
under nonfaulty condition :
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C = Cov(Gn-6¢) = E{I 6a-6¢1[6a-6¢17}
= [Qn-Qf]) R [Qn-Qf]T + [Pn + Pr] o2 (3.2)
where
Qi = Pid:i™r;
Pi = [$iT®i)t , i=n,f
R =E {HH"}
E denotes the expectation with respect to the

underlying probability space, and ¢ and ¥ are as in
(2.7) and (2.19) respectively.

The first term in the right of Eq. (3.2) accounts
for the effects of undermodelling and the difference in
input signals for the two experiments. Note that if
there is no undermodelling or if the inputs are
identical, this term vanishes. The second term on the
right side of Eq. (3.2) corresponds to measurement
noise. The higher SNR (signal-to-noise ratio) is, the
smaller the norm of this term. Also note that Eq.
(3.2) is of nonrecursive form and so unsuitable for the
applicaton to on-line detection problems.

3.2 Recursive Scheme

For the recursive computation, Eq. (3.2) can be

rewritten from the on-line point of view :

Ck) = [Qn-Qe(KIR[Qn-Qs (K)]T + [Pn+Ps (k)] o+2
, k2N (3.3)
where

Qr{k) = Pe(k)PeT(k)W¥e (k) (3.4)

Pe(k) = [T P (k) ]-1,

I}

In Eq. (3.3) Qn and Pn are obtained from the nonfaulty
data for the fixed interval at a certain operating
condition by prior experiments. Pe(k) can utilize the
value which has been already saved on the way to
estimating parameter 61(k). In order to obtain Qr (k)
rapidly we present a recursive algorithm to compute

$T(k)VW(k) in Eq. (3.4).

Theorer 3.2 : The term $T(-)W¥(-) in Eq. (3.4) can be
computed by the following recursion :

PTR)V(K) = T(k-1)W(k-1) + ¢ (k) PnT(k)

- u(k-N)®T(k-1) , k2N (3.5)

where
Yik) = [ wk) ulk-1) ... u(k~i+1) On-: JT (3.6)
and ¢ (k) is given by Eq. (2.5). In (3.6) ©; denotes

the null vector of j columns.

Proof : By the definition (3.8) for ¥i(:), we can
express V(k) of Eq. (2.19) as follows :

W(k) = [ p1(k-N+1) p2(k-N+2) ak) JT.

We have then



STV (k)

1 T(k-N+1)
= [ p(k-N+1) p(kN+2) ... (k) ] wz"'(l:(-Noz)
T (k)
) gé(k'm”w;”k_"'” (3.7

imi

N-1
= 3 G (k-N+1)piT(k-N+i) + $ (k) pnT(k).

(3.8)
iwt
Eq. (3.7) gives
N
ST (k-DW(k-1) = iZii<z£~(k—l—N+i)11)i1'(k—l—N+i)
N-1
= i2.0‘15(k~N+i)¢.iq-x"'(k—N4>i). (3.9)
Since
Wi+g (k-N+i)
= [ u(k-N+i) ..... u(k-N+1) u(k-N) On-i-y 17T
= pi(k-N+i) + [ Oi u(k-N) On-i-1 1T (3.10)
substituting (3.10) into (3.9) yields
PT(k-1)V(k-1)
= E;¢(k-N*i){llliT(k~N+i) + [ 0i u(k-N) On-i-1 1}
N-t
= i)?ﬂl&’>(k—N+i)ll1iT(k—Nx~'1) + ST (k-Dulk-N).
(3.11)

Eqs. (3.8) and (3.11) give Eq. (3.5), which completes
the proof.
A\VAVAV4

Note that Theorem 3.2 makes it possible to compute
C(k) of Eq. (3.3) rapidly since Eq. (3.5) is computed
recursively, We can derive a recursive equation for
C(k), if necessary, using Egs. (2.14) and (3.5).

Of course, the derivation of the covariance C(k)
depends upon prior knowledge of o +v2 and R. This data
can be obtained from prior experimentation with
nonfault systems based on some simplifying assumptions.
For instance, in recent literature on robust adaptive
control [16,17] it has been assumed that the unmodelled

dynamics are bounded by an exponential function. The
corresponding stochastic assumption would be

E {(h(KOh({} = rk) Sk,
where  r(k) = 602 eBK 5 k,j=0,1,- (3.12)

In Eq. (3.12), 2/8 can be considered as the ‘average’
time constant for the class of unmodelled dynamics.
Given the simple description (3.12), we can estimate
002 and B from a sequence of prior experiments on
nonfault systems.

The matrix C(k) of (3.3) can now be used to
formulate appropriate test variables for robust fault
detection. For example, we may use
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~ ~

Ty(k) = [6a-B¢(K)]T C1(k) [Ba-Br(k)]} (3.13)

Tz(k)

[6n-81(k)]T [diag(C(k)) It [Hn-61 (k)]

which are based on the idea of comparing the observed
value of [Bn - 61 (k)1[6n - G:(KIT with its
expected value, i.e. the covariance C(k). If the test
variable is larger than a proper threshold, we take
this as an evidence that the system parameters have
changed, i.e. a fault has occured.

Note that the detection algorithm proposed in this
section is applicable to on-line fault detection
problems since it is of recursive form and has a low
computational burden, which wiil be shown in the next
section,

IV. COMPARISON OF
COMPUTATIONAL BURDEN

In passing frorm nonrecursive scheme to recursive
one, considerable improvements in the computational
aspect are expected. As shown in Table 4.1, where the
required numbers of multiplications are compared, it
can be seen that the improvements of the new algorithm
for fault detection are obvious.

Table 4.1 Comparison of computational requirements
(number of multiplications) between
nonrecursive and recursive schemes.

Object Nonrecursive scheme|Recursive scheme
& (k) [(3/2)np2 + nbIN (3/2)np® + 6nb2
+ (np%)/2 + 6mp
(1/2)nsN2
c(k) + (np2 + mp)N (2np2 + 3nu)N
+ (1/2)np2 + (3/2)np?
Ty (k) s + np? + m npS + np2 + my
Total
computational O (N2) O (N)
burden
where nb : number of parameters to be estimated

N : number of data in the fixed interval.

Note that the total computational burden of
nonrecursive and recursive schemes can be summarized as
order of N2 and order of N, respectively since N is
usually much larger than n» in Table 4.1. As a
consequence, the algorithms presented in this paper is
shown to be more convenient for practical applications
to on-line fault detection than the nonrecursive
algorithms in [9,10].



V. CONCILUSIONS

The aim of this paper is to design an on-line fault
detection method robust to modelling error and
measurement noise. An effort has been made in this
paper to overcome the computational complexity problem
in existing methods. The recursive fixed-interval~
sliding-window filter (2.14) and the recursive
algorithm for C based on Theorem 3.2 have given a
contribution to this purpose. Since the proposed
algorithm is a recursive version of the robust fault
detection method in [9,10], it is supposed to exhibit
the same detection performance as that of [9,10].
Moreover, it is applicable to on-line fault detection
problems since its computational burden is considerably
lessened as shown in Table 4.1.
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