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Abstract

The problem of identification of continuous systems is
considered when both the discrete input and output mea-
surements are contaminated by white noises. Using a pre-
designed digital low-pass filter, a discrete-time estimation
model is constructed easily without direct approximations of
system signal derivatives from sampled data. If the pass-band
of the filter is designed so that it includes the main frequencies
of both the system input and output signals in some range,
the noise effects are sufficiently reduced, accurate estimates
can be obtained by least squares(LS) algorithm in the pres-
ence of low measurement noises. Two classes of filters(infinite
impulse response(IIR) filter and finite impulse response(FIR)
filter) are employed. The former requires less computational
burden and memory than the latter while the latter is suit-
able for the bias compensated least squares(BCLS) method,
which compensates the bias of the LS estimate by the es-
timates of the input-output noise variances and thus yields
unbiased estimates in the presence of high noises.

1 Introduction

Recently, the direct approaches to continuous system pa-
rameter estimation purely using digital computers have re-
ceived more and more attention due to the rapid development
of digital computers.

A major difficulty of identification of continuous-time mod
els is that the derivatives of the system input-output signals
are not measured directly and the differentiations may ac-
centuate the noise effects. Therefore an important problem
is how to handle the time derivatives[8]. In this report we
present a digital low-pass filtering approach to direct recur-
sive identification of linear SISO continuous systems. It is as-
sumed that both the system input and output sampled data
are contaminated by white noises. The approach includes the
following steps:

1: Find a low-pass digital filter to prefilter the noise accen-
tuating signal derivatives.

2: Construct a discrete-time estimation model with continu-
ous system parameters.

3: Use a recursive identification algorithm to estimate the
system parameters {rom filtered input-output sampled data.

In the case where the input is exactly known and only the
output is corrupted by a measurement noise, it is well-known
that the pass-band of the filters should be chosen such that
it matches that of the system under study as closely(5,6,10].
And when the input measurement is assumed to be noise-
{ree and only the output measurement is corrupted by a high
measurement noise, the bootstrap method gives excellent re-
sults.
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However, in most practical situtations, it may not be pos-
sible to avoid the noise when measuring the input signal.
In this case, the bootstrap method may give erroneous re-
sults. So far, although some works have discussed the iden-
tification of discrete-time systems in the presence of input
noise(1,2,7,9], we have not found such works for identification
of continuous systems.

It will be found that in the presence of input measure-
ment noise, it is not appropriate to let the pass-band of the
pre-filters match that of the continuous system under study
as suggested in some previous works. Our simulation results
will show that when both the input and output signals are
corrupted by measurement noises, the pass-band of the digi-
tal low-pass filters should be chosen such that it includes the
main frequencies of both the system input and output sig-
nals in some range. Since most physical systems are low-pass
systems, we emphasize that the selection of the pass-band of
the pre-filters should be based on the frequencies of the input
signals. To the limit of our knowledge, this aspect has not
received so much attention in the literature.

Clearly, the digital low-pass filters employed in continu-
ous system identification can be obtained using the existing
digital filter design techniques[3] to have excellent filtering
effects. Two classes of filters(FIR filter and IIR filter) are
employed. The IIR filters require less computational burden
and memory than the FIR filters while the FIR filters are suit-
able for the BCLS method which yields unbiased estimates in
the presence of high input-output measurement noises{1,9].
2 Statement of the problem

Consider the following SISO continuous system

Alp)z(t) = lfl(p)uu)
Alp) = ;o aip"™t (ap=1) )
B{p) = Y bp"

=1
where p is differential operator, u(t), (t) are the real input
and the real output, and n is the known system order.
Our goal is to identify the system parameters from the
noisy sampled input-output data: :

y(k) = z(k)+e(k)
wik) = u(k)+v(k)

(2)

where & denotes the sampling time instants t
0,1,.-
pling period. v(k) and e(k) are white noises such that
Ble(k)} = 0, Ele(k)?) = 02
Elu(k)] = 0, Efv(k)?] = 52
Ele(k)u(k)] = 0, Elu(k)u(k)] =0, E[u(k)e(k)] =0

kT(k =
-, N) for convenience of notation. and T is the sam-

(3)



Since differential operations may accentuate the measure-
ment noise effects, it is inappropriate to identify the param-
Our
objective here is to introduce a digital low-pass filter which

eters using direct approximations of differentiations.

would reduce the noise effects sufficiently. Then we can ob-
tain a discrete-time estimation model with continuous system
parameters.
3 Discrete-time estimation models

In this section, we describe the design techniques of the
two classes of digital filters and the discrete-time estimation
models derived by the pre-designed filters.
3.1 FIR filtering approach

It is known that the differential operator in (1) can be
replaced by the bilinear transformation:

LA D e IR b R
g%fh(Ti +z_1) z(k) = ;b-(fﬁ‘}—l) u(k) (4)
Introduce a low-pass digital filter F(z71) as
—-1
F(z"1) = Qp(z") (15— (5)

where @r(z71) is a kind of FIR filter.

Many types of FIR digital filters can be applied to @ p(z71).

For simplicity, we consider a desired ideal low-pass filter which

has the specification:

1
0

IUJ’S Wde

Hy(w) = { (6)

otherwise
Various design techniques{3] can be used to design FIR filters.
The Hamming window method for the ideal low-pass filter is
outlined here:

1: Select an appropriate integer M, sampling interval T', and
the desired cut-off frequency wy,.

2: Perform the inverse Fourier transform to have the coeffi-
cients ¢,, of Hi(z71):

M
Hi:™Y = Z 2 "
m=—AM/
/T 3
Cm l/ Hy(w)er™ 7T dw = sin(mTwac)
27T —rT T™m,
(M)
3: Multiply c,n by the Hamming window function:
0.54 + 0.46 cos(rm /M) fmi|< M
Wy = T (8)
0 otherwise
and then obtain
M
o= Y de™ cdy=cmwm (9)
m=-—M

4: Obtain the causal filter Qr(z~!) by delaying the entire
sequence by M sampling intervals:

2M
QF(Z_l) = Z sz—m ( dm = C:n‘M ) (]0)
=0

Multiplying both sides of (4) by the pre-designed F(z71)
and using (2), we have

n

>

=0

aitra(k) = 3 biErualk) + re(k) (1)
=1
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where
Eris(k) = QrETINEY (4271 - 2T ()
2M+4n )
= 3 27 f(k)
=0
rr(k) = Y ailpiclk) = 3 bipin(k)
5A=’Wo+n ‘=]2M+n

3 ogrlelk)— Y. BirTu(k)
7=0 7=0
n . n
a; = flai, B =3 Fib
=0 =1 (12)
3.2 IIR filtering approach
There are many design methods for IR digital filters. One
of the most popular formulations is to use the large body of
knowledge of the continuous-time or analog filters such as
Butterworth filter, Chebyshev filter, inverse Chebyshev filter
or the analog state variable filters[5,10]. When a continuous
filter is designed, we can transform it in some manner such
as the bilinear transformation to obtain the IIR digital filter.
In this report, we choose an mth(m > n) order Butter-
worth filter Fy(p):

F _ 1 _
) (pfwe)™ + cr(pfw)™ ! + eapfwe) P+ + o
(13)
where ¢;(t = 1,2,---,m} are the coefficients which let the

Butterworth filter whose magnitude response is maximally
flat for w < w, and declines monotonically for w > w,, has
the basic form for the ‘amplitude-squared function’ as

1

F 2: > F — gy T T 14
| Fi(w) [*= Fr(p)F1(—p) |p=ju EYOIALE {(14)
where w, is the cut-off frequency for which
|
| Fr(w) I°< PX o[> we (15)

Multiplying both sides of the system (1) by the pre-designed
Fi{(p), we have

Fp)p™s(t) + 3 a: Fr(p)p"™ " *a(t) = 3 b Fi(p)p™ ' u(2)

=1 =1
(16)

Discretizing it by the bilinear transformation and using (2),
we obtain

n n

Zaughy(k): szglzw(k) + Tf(k) (17)

1=0 =1
where

ri(k) =3 ailrie(k) = Y bikrin(k)
3=0 i=1

enslk) = QuEY (1 4 271 = (k)
T m—n ~1ym—n
(‘2“) (1+277)

P - 1
™+ e (
< 1=1

QUG =72

W

-z meig L i =1y
wt_) (5) (1+2z77)
(18)

Both types of digital filters are useful. The IIR filters
have simple design methods using the bilinear transforma-
tion. And the IIR filters can produce desired amplitude re-

{

sponse with significantly few coefficients than nonrecursive



FIR filters. Therefore, usually, the IIR filters are more con-
venient for the LS or the bootstrap algorithms(5,6]. However,
as shown later, the FIR filters are suitable for the so-called
BCLS method which yields unbiased estimates in the pres-
ence of high input-output measurement noises. The pass-
band of the filters should be choser to reduce the noise ef-
fects. It can be shown that some well-known methods can be
viewed as either the FIR or the IR filtering approach{5,6].
4 LS method

When the digital low-pass filters have been designed, we
have the discrete-time estimation model of (11) for the FIR
filtering approach, or the model of (17) for the IIR filtering
approach. Both can be written in vector form:

Eoy(k) = 2T (k)6 +7(k)
ZTU‘:) = [_ély(k)r"'!_E"y(k):glw(k)s“':&nw(k)]
0T = [ay, -t b1, oy bl
(19)
where

Eiy (k) = Eriy(k), Eiunlk) = Epin(R), (k) = 7 (k) (FIR filter)
Eiy(k) = Eriy(k), Giw(k) = Eriw(k), r(k) = 7, (k) (LR filter)
(20)
We can estimate the continuous system parameters by the
{following LS method:

N N
§=13" 22" (k) [ alk)oy (k)] (21)
k=ko k=ko

When the noise effects can not be neglected, it is well-
known that the LS estimate is asymptotically biased in gen-
eral. For the case where both the input and output signals
are corrupted by low measurement noises, if the pass-band of
the pre-designed digital low-pass filter includes both the sys-
tem input and output signals in some range, the LS method
is still efficient in the presence of low measurement noises.
When the discrete input-output measurements are corrupted
by high white noises, we will extend the BCLS method{1.4,9]
which yields unbiased parameter estimates of discrete-time
systems, to the case of continuous systems in the next sec-
tion.

5 BCLS method for the
FIR filtering approach

In this section, we extend the BCLS method to the prob-
lem of identification of continuous system in the prasence of
input-output measurement noises by making use of the FIR
filtering approach. The IIR filtering approach while tequiring
less computational effort and memory, is not suitable since it
is not easy to express the correlations of the outputs of the
[IR filters.

5.1 Expression of the bias
Consider the discrete model derived by the FIR filter:

Eroy(k) = 2T (k)8 + rp(k)
2T(k) = [—&riy(k), o, —€rny(k), EF1u k), -, Epnulk))
8T = [a1, -+, an,b1, -, ba) = [a7,b7)
(22}
The LS estimate is
N N N
0= 2(k"(k)N [ 2(k)Eroy (k)] (23)
k=kg k=ko
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It can be shown that

N N
glixie = 6+ NP(N)[EI_{TO Wk;, z(k)rr(k)]  (24)
where
. N
P(N)={plim 3 z(k)z"(k)]"! (25)
N0 k=g
With straight calculations, we have
1 &
(plim — ¥ a(k)rr(k)] = —-DH(9) (26)
N—oo k=ky
where
H(%) = [h°(a),h*(b)]”
he(a) = [hi(a), - hg(@)],  h¥(b) = [Ai(b}, -, h}(b)]
2M+n AM4n
he(a)= > fio;(a), hAI(BY= Y. f;B;(b)
—0 =0
(27)
and the 2n x 2n matrix D is of the form
1, 0
D= eln On .
[ 0, oI, 1 (28)

where I,,, 0,, are an identity matrix and a zero matrix of order
n respectively.

Unfortunately, for the IIR filtering approach, it is difficult
to express the bias explicitly by ¢Z and 02, since, usually,
expressions of the correlations of the outputs of the IIR filters
are not so simple.

5.2 BCLS method
From (24) and (26), we have

8 plim § + NP(N)DH(9)

N—oo

(29)

which implies that an unbiased estimate of the unknown pa-
rameters can be obtained by substracting an estimate of the
bias. If we have the estimates of 02 and o2, the BCLS algo-
rithm is given by

Opc(N) §(N) + NP(N)DH[fpc(N - 1)]  (30)

and 6(N), P(N) are obtained by

G(NY = 6(N — 1)+ L(N)[Eroy(N) — 2T (N )(N — 1))
L(N) = P(N - 1)z(N)
© p(N)+2T(N)P(N - 1)z(N)

L py - 1y~ PV = Da(Na (NP 1)

PINY =y RN AP ) ])
31

where p(N) is forgetting factor and is chosen to be

p(N)=(1-001)p(¥N ~1)+0.01 p(0)=0.95 (32)

The BCLS method requires the estimates of o2 and ¢2. In
the next subsection, we will show the method to find 52 and
52,
5.3 Estimation of ¢? and ¢?

The equation error #p(k) for the LS estimate é(N) is

#r(k) = Eroy(k) — 2T (K)O(N) (33)



Using (22), we have and thus

#r(k) = 27 (k)9 - O(N)] + rr(k) (34) [y Mt

plim = Z a]'(a)aﬁ[,(a)af
From (23) and (33), we have Moo §;°+n_L
S akyin(B) =0 (35) o A
B Z T = =
K=ko ~h*(a)[a ~ &(N)]o? - B(b)[b - B(N)]o?
Using (34) and (35), we have the sum of squared residuals: (45)
N where
g(N) = kzk Fr(k)rr(k) h*(a) jgli(a)i-'wﬁf.(a)], h’(b) = [jﬁ(b),; “ hn(b)]
TV ‘ N (36) he ) — % 1 v - t
; (@) = f » R{(b)= ‘ b
= k},:, rp(k) + kX; 27 (k)rp(k)(0 — 6(N)) * ,):‘o eenleh R ;’V:; fPrenl®)
=ko =ko (46)
Since Then the estimates of the unknown variances ¢2 and o2
1 2M4n 2M+4n are given by the solution of the following equation:
plim ri(h) = BUR(] = 3, eg(a)el + )}:0 CHOLS
= =
(37) aj; Q2 (73 _ 03 _ 1 g(N)
and {021 a22][03]_A[03]*F[f(N)] )
plim T Byrp(k) = Bl (Wyrp(k)] = ~H' (D (38)  where
then the following result can be obtained: a1y = Mf’l a?(ﬁEc(N - 1)
(V) 2M+n 2M+n 1=0
plim &) = S @24 S p(b)a? ~h*(apc(N ~ 1)) [apo(N - 1) - &(N)]
Noow N =0 —0 2M+n R
~h*(a)[a — &(N)]o? ~ h*(b)[b ~ B(N)|o? sz = ) F(bgc(N - 1))
(39) =0 . . .
Similar to the above discussions, we deifine the instru- ;A:l*_'(‘l:fcuv = 1)) [bac(N — 1) — b(¥)]
mental variable estimte 4(N) by ay = E a;(pc(N — 1)) a4 (dpc(N ~ 1))
N N =0
Ny =3 2(k)zT(k - D73 2(k)époy(k — L)) —h*(8pc(N - 1)) [apc(N - 1) — &(N)]
k=ko k=g 2M4n—L . N
(40) an = Y Bi(bpo(N —1)) B4L(brc(N - 1))
. - . =0
wh;:ev]), is a natural number. The recursive form is —h*(bge(N - 1)) [BEC(N - 1)~ b(N)]
= (48)
N — 1)+ L(N)[époy(N — L) - 2T (N — L)§(N - 1)] It should be noted that the delay L should be chosen
- P(N ~ N N
L(N)= T zT((N - L]));((N)— D) such that A and [ Y 2z(k)z7 (k — L)] are nonsingular. To our
P(N)= _ T . experiences, the e:i);:lation results are not sensitive to L.
__I_IP(N -1)- PN - ])ZT(N)Z (N - L)P(N - ])] Now we will consider the methods to calculate g(N) and
p(N) PN) +28(N — L)P(N - 1)u(N) (41 f(N). It can be shown that
The equation error for (N) is defined by f: [ —Eroy(k) } [—&roy(k), 2T (k)] [ ! ]
Fr(k) = Eroy(k) — 27 (k)I(N) (42) =AY o o(N)
and it can also be shown that = Z [ _ng(OI:)(k) ] [=*r(k)} = [ g((I)V) }
_ k=kq
Fo(k) = 27 ()0 - O(N)] + e (k) N
w & [ W ] eron(k = 1) w7k = ) [ i) ]
N k=ko
k)yrp(k~L)=0 & [ —€roy(k N
kzk; z(k)7r(k — L) -y fF(ok)( ) ] (re(k - I)] = [ f(o ) }
k=kq
Hence we have (49)
N Hence we can express g(N), f(N) as
JN) = Y te(Ryre(k - D) ) .
X 9N = 3 ehoy(k) = 3 Eray(k)2" (R)ECN)
= Y re(k)yrp(k - L) (44) k=ko k=ko .
= ) FN) = 3 €roy(k)erag(k — L) = 3 £poy (k)27 (k — L)B(N)
+ 3 2Tk — Lyrp(k)(6 - 8(N)) k=kq K=k s0)
k=kq
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Based on the above discussions, we can summarize the
on-line BCLS algorithm as:
1: Calculate the LS estimate §(N) and the IV estimate 6(N)
by (31) and (41} respectively.
: Calculate g(N) and f(N) by (50).
: Solve (47) to have the variance estimates 62 and 62.
: Compensate the bias of the LS estimate §(N) by (30).
: Return to 1 untill convergence
6 Illustrative examples
Consider a second-order system described by

2
3
4
5

(1) + a12(t) + a2z(t) = bya(t) + bau(t)

(1)
a = 3.0, az = 4.0, bl = 0.0, bz =4.0

The input u(t) is the output of a second-order continuous-
time Butterworth input filter driven by a stationary random

signal ¢(¢):

u(t) = L(p)((t) =

(), we=40
(52)

The sampling interval is taken to be T = 0.04, and o, =

1
(plwe)® + V2(p/we) +1

2.38,0, = 0.7. The LS estimates for the case of low mea-
surement noises where o, = 0.24,0. = 0.07(N/S ratio= 0.1}
are shown in Table 1 for the FIR filters(M = 25), and Ta-
ble 2 for the IIR filters(m = 2). In Table 1, w,. denotes the
actual cut-off frequency of the FIR filter F(z71) defined in
equation{5) which lets | F(w) [2< 1/2, for | w |> wac.

Each of the tables includes the mean and standard devi-
ation of the estimates obtained {rom Monte-Carlo simulation
of 20 experiments. 10000 samples are taken for each experi-
ment. And in each table, A||8]| = 1|6 — 4.

The frequency responses of the system, the digital pre-
filters used in Tables 1~2 and the input filter L(p) in (52)
are shown in Figs.1~2. It is clear that accurate estimates
can be obtained if the pass-band of the pre-filters includes
that of the low-pass input filter L(p) in equation(52) in some
range. Therefore, for the case of low input-output measure-
ment noises, if the pass-band of the digital low-pass filters
is chosen such that it includes the main frequencies of both
the real systemn input-output signals in some range, the noise
effects are sufficiently reduced, and thus the LS estimates are
still acceptable. For the case where the input is noise-free
and only the output is corrupted by a measurement noise,
it is known that the pass-band of the filters should be cho-
sen such that it matches that of the system under study as
closely. This suggestion is not appropriate in the presence of
input measurement noise.

The LS estimates and the BCLS estimates(L = 5) for
the FIR filters are shown in Table 3 and Table 4 when o, =
0.60,0, = 0.17(N/S ratiox 0.25). In the presence of high
input-output measurement noises, it is difficult to obtain ac-
curate estimates with the LS method. However, the BCLS
method is very efficient in this case.

7 Conclusion

In this report, the digital filtering approach to recur-
sive identification of continuous systems from noisy sampled
input-output data have been discussed. Using a pre-designed
digital low-pass filter, a discrete-time estimation model with
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continuous system parameters is constructed easily. And it
was emphasized that in the presence of input measurement
noise, the pass-band of the filters should be chosen such that
it includes the main frequencies of the real system input-
output signals in some range to reduce the noise effects.

Two classes of filters(FIR filter and IIR filter) have been
applied. Both classes of filters have excellent noise reduc-
ing effects. Usually, the IIR filters require less computational
burden and memory than the FIR filters and are more conve-
nient. However, it has been shown that for the discrete-time
model derived by the FIR filters, the bias of the LS estimates
can be expressed explicitly by o2 and o2. Hence the FIR
filtering approach is suitable for the BCLS method which
yields unbiased estimates in the presence of high measure-
ment noises.
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Table 1: LS estimates(FIR filter, N/S ratio= 0.1}

Wdc ay sz by b1

(wac) | (3.0) (4.0) [(0.0) | (40) ] AH8)
14.0 2.892 4.089 0.009 4.012
(12.47) | £0.041 +0.030 | £0.006 | £0.034 | 0.141
i2.0 2.918 4.052 0.009 4.004
(10,57) +0.037 +0.027 | £0.006 | +£0.030 | 0.097
10.0 2.930 4.020 0.010 3.989
(8.62) | £0.030 +0.025 | £0.005 | £0.025 | 0.074
8.0 2.934 3.993 0.011 3.972
(6.69) | £0.025 +0.023 | £0.004 | £0.021 | 0.073
7.0 2.934 3.980 0.013 3.963
(5.69) | £0.024 +0.023 | £0.004 | £0.020 | 0.080
5.0 2.920 3.945 0.018 3.933
(3.78) +0.024 +0.023 | £0.005 | £0.022 | 0.120
4.0 2.9018 3.914 0.025 3.904
(3.01) | £0.026 | £0.0245 | +0.006 | £0.026 | 0.163

Table 2: LS estimates(IIR filter, N/S ratiox 0.1)

a 2 b by

we | (3.0) (4.0) (0.0) (4.0) Aligli
2.857 4.100 0.010 3.988

10.0 { £0.039 | £0.029 [ £0.006 | £0.030 | 0.176
2.906 4.050 0.009 3.990

8.0 | £0.035 | £0.027 | +0.005 | £0.026 | 0.107
2.936 4.013 0.009 3.984

6.0 | £0.030 | £0.025 } +0.004 | £0.022 | 0.068
2.944 3.979 0.011 3.965

4.0 | 40.024 | +0.023 | +0.004 | £0.019 | 0.070
2.930 3.950 0.015 3.938

3.0 | £0.024 | #£0.022 | £0.004 | £0.020 | 0.108
2.875 3.866 0.030 3.852

2.0 | £0.030 | £0.024 | £0.005 | £0.027 | 0.238

Table 3: LS estimates(FIR filter, N/S ratiox 0.25)

Wie ay az b1 b1

(wac) | (3.0) (4.0) (0.0) (4.0) A8l
12.0 2.363 4.219 0.041 3.703
(10.57) 4+0.072 | £0.063 | £0.0131 | +0.067 | 0.737
10.0 2.477 4.042 0.045 3.697
(8.62) | £0.062 | £0.057 +0.011 | £0.056 | 0.608
7.0 2.570 3.840 0.056 3.649
(5.69) | +0.051 | £0.053 +0.010 | £0.043 | 0.581
5.0 2.536 3.672 0.083 3.535
(_3‘78) +0.049 | £+0.053 +0.012 | £0.044 | 0.738
4.0 2.471 3.545 0.110 3.420
(3.01) | £0.051 | £0.053 +0.012 | £0.050 | 0.914

Gain

0.8.
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Table 4: BCLS estimates(FIR filter, N/S ratiox 0.25)

Wae a a b1 b
(wae) |(3.0) |(4.0) [(0.0) 1(4.0) Aflel
12.0 3.076 4.030 0.001 4.094
(10.57) | £0.096 | £0.072 | £0.015 | £0.077 | 0.124
10.0 3.052 4.024 0.002 4.072
(8.62) | £0.077 | £0.067 | £0.012 | £0.061 | 0.092
7.0 3.034 4.023 0.002 4.053
(5.69) | £0.061 | £0.070 | £0.010 | £:0.051 | 0.067
5.0 3.037 4.031 -0.000 4.057
(3.78) | £0.062 | £0.062 | +£0.013 | £0.061 | 0.075
4.0 3.039 4.035 -0.001 4.061
(3.01) | £0.071 | £0.066 | £0.016 | £0.072 | 0.081

input filter
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----- digital filterj
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Figure 2. Frequency responses of the IIR filters
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