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~.Abstract

The concept of the manipulability measure of the
robotic mechanism is extended to the dual arm holding a
single object. This is a measure cf manipulating
ability of the dual arm forming a closed kinematic
chain in positioning and orienting the cbject. Dual arm
manipulability measure is defined and compared to the
single arm manipulability measure, and some properties
are investigated.

1. Introduction

Dual arm cooperative manipulation of ohjects can
perform many tasks that would be impossible for a
single raobot, and it  provides flexibility and

versatility in task execution Dual arm cooperation

can perform parts assembly, without the mechanical aids

such as fixtures or jigs, and it can handle heavy or
voluminous objects , whose weight exceeds the load
capacity of the individual arms, or whose size

prectudes the single arm grip of the objects .
Applications for cooperating robots may be grouped
into two catergories. In the first catergory, all robot
arms are in rigid contact with the object. The second
category comprises those assembly tasks where each arm
is holding a seperate object. unlike the

robot arms do not form a complete closed

In this case,
first case,

kinematic loop. The problem considered in this paper
deals only with the first case.
Mainpulability measure has been used for joint

configuration optimization of redundant arms. Reasearch
on redundant arms has been focused on how to obtain

optimal inverse kinematics or from
the underspecified set of kinematic equations [1],[{3] -
[71. Kinematic with
additional certain
performance index criteria.
be

constraints used:

inverse Jacobians

equations are compensated
obtained
Approaches to the solution
to the additional

i) Jacobian pseudo-inverse solution

constraints from

can classified according
minimum norm constraint of the joint velocity
used[ 2], ii) The medified

solution where Jacobian
added to the

minimize certain

where

vector is Jacobian

pseudo-inverse null space
pseudo-inverse
index[4],

in which

is Jacobiar
salution to
The extended Jacobian solution

solution
performance

extra
of the
optimal joint configurations and added to the forward

iii)
constraints are obtained from the conditions

kinematics to form the extended Jacobian[§]
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Works on the use of the manipulability measure has
been less
Dual
arm manipulability has been studied in literatures such
Lee(8], Tao and Luh{9]. In [8], dual
manipulabitity defined the approximate
representation of the wvolume of intersection between

largely concentrated on a single robot, and

attention has been paid to the dual robot problem.
and

as S. arm

is as
two individual manipulability ellipsoids. Task oriented
dual in [8],
to optimize the dual redundant arm configuration

and used
by
arm manipulability ellipsoid

manipulability is also defined

closely matching the dual

with the desired motion manipulability ellipsoid. In
[91, a different definition of the dual arm
manipulability measure is given and used for the
coordination of the dual arm.

This paper presents a new definition of the dual arm
manipulability measures. We show that, in the case of
two arms tightly holding a single object, the

definition of the single arm manipulability measure can
be directly extended to the dual and the
the ellipsoid

inverse relation as

arm case,

manipulability ellipsoid and force

exhibit the same in the single arm
This

Manipulability measure definition

case. paper is organized as follows.

used for a single
robot are reviewed in section II. A new definition of
the dual

section III,

arm manipulability ellipsoid is given in

and in section IV, the corresponding force
ellipsoid is presented . In section V,
of the  dual

investigated and

some properties

arm manipulability measures are

some examples are presenled for

illustrations in section VI. Conclusions are drawn in

section VII.

_II._ Review of Manipulability an

_Force Ellipsoids

The unit (hyper) sphere defined at the origin of the

joint velocity space can be mapped to the (hyper)
ellipsoid in the Cartesian velocity space by Jacobian
transformation. This ellipsoid is called the
manipulability ellipsoid[21[10]. The manipulability

ellipsoid describes the characteristics of the feasible
motion in the Cartesian space corresponding to all unit
norm joint velocities.

The manipulability ellipsoid can be mathematically
follows. n degree of

defined as Assuming that an



freedom arm is working in an m dimensional task space,

where m < n, we have
x = Jo e (1)
where x and 0 indicates the Cartesian and Jjoint

velocity vectors defined in the task space R" and the
joint space R™. J represents the m x n Jacobian
matrix.

The Jacobian J defines the mapping from R» to R™. The
unit sphere in R" described by

lerz = 1 (2)
can be mapped into an ellipsoid in R™ through J.
losz = 0To
= X WUDT gtk
= XT (JJT )+
= [ YT (W) k=] ®
where the superscript "+" indicates the pseudo-inverse
of the matrix, J* = JT (JJT)~!, and (3) represents an
ellipsoid equation in R®. This ellipsoid is called the
manipulability ellipsoid and the the volume of this
single arm mainpulability ellipsoid Vsw is given by

Vem = D Ws (4)
i} = @2/ T ((m/2) + 1) (5)
We = [ det (JJT ) ] tr2 (8)

where T(-) is the gamma function. We is defined as
the manipulability measure, and represents the volume
of the ellipsoid except for the constant coefficient
which depends only on the dimension m. The single ara
manipulability measure ( SMM )} is written formally as
below.
SMM = [ det ( JJT ) Jt72 (7)

Let f denote the force ( and moment ) vector applied

by the end effector, and let T denote the joint driving

torque( and force ). Then we have,

T = JOTTf (8)
The unit sphere defined by
Tz = 1 (9)
can be mapped into an ellipsoid in R™ through J.
iz = 2Tt
= [ fFT(WT) f = 1] (10)

The ellipsoid defined in (10) is
volume of this single arm force

called the force
ellipsoid , and

ellipsoid Veas is given by

Vet = D / Ws a)
Let the eigen values of JUT be denoted by 012,
022,.....0n? with 012 2 022 2 - -Oa? and the

corresponding eigen vectors be denoted by ut, uz.. .. ..
um. Then the measure Ws can be expressed as
Ws = 01 62 .... Om (12)
The manipulabiliy ellipsoid expressed by (3) is an
ellipsoid with the principal axes Jiuy, O2u2. ...CwUw
The force ellipsoid expressed by (10) share the same
principal axes vector as the manipulability ellipsoid

with the principal axes (1/0)ur . (l/oz2duz ., ...

(1/6n) un

force ellipsoid is in inverse proportion to the

The length of the each principal axis of the

principal axes of the manipulability ellipsoid, and
hence ,the volume Ver is in inverse proportion to that

of the manipulability ellipsoid.

III, Dual Arm Manipulability Ellipsoid

Assume that the end effectors of the two robots are

grasping an object as shown in Fig. 1, and the object
is held rigidly so that no relative motion is possible
between the object and the grippers.
For convenience, subscripts 1 and 2 are used to
indicate the two robots. let
X i = end position and orientation vector of

the robots in Cartesian space. (mx!)

0i = Joint position vectar of the robots in
joint space. (nx1)
Ji = Jacobian transformation between the

robot joint spaces and the robot end

position coordinates. (mxn)
We assume that neither of the two robots is in singular
position, and the Jacobians always have full ranks.

Since the object is held rigidly by the grippers, we

consider the chject as being an integral part of the
grippers, and divide the object conceptually at the
reference point of the object. The reference point of
the object is then viewed as the end position of the
two robots (Figure 2)

If we let x; and xz be the end velocities of the
robots , we have
Xt = J1(01) 01 a3
Jz(62) 02 (14)

Since we assume that the object is held rigidly by

H

X2

the grippers and there is no relative motion between

the object and the grippers, we get following
constraints.
ko= xz (15)
x1o= xz (18)

Using this constraints, we develope the expression

for the dual arm manipulability as follows. Let

p =

. e .
(] Lo
! ) [: 3‘ 32 i an
Then
b = X1 = Jy 0 B
['xz ] [ 0 Jz:l ['olz]
= J 8 (18)

The unit sphere in R2» described by

oz = 1
can be transformed into R%» through J



fonz = oTo
= br ( JH)T g+ b
= PTCIJIT b
= PT(JITI (19)

= [ %17 %27 ) [ Jidy T 0 ]" [.Xl :l
0 Jzd2T 2

(JgdgT)4 0 ]['M j
-XZ

[ %7 2T ] [:
0 (Jzd2M-t
(20)

= 1
Since the end velocity of the two arm must be

it

equal as in (15), letting % = x1 = xz and by (20)

B[R

(Jgd1 )t 0

[ %7 %71
L

(dgd2M)-t
XT L (adiT=t s (J2dgDt 1 x = 1 2
The above equation (21) describes the dual arm
manipulability ellipsoid in R™ space, and its volume
Vdn is given by
Vam = D Wa (22)
We = [det( (Jgda™)t + (J2dpT)-t )]1-172 (23)
where D is given by (5). This dual arm
manipulability ellipsoid describes the character-

the

accomplished by

feasible motion of the object that can
all

istics of

be unit norm vector

"0 =1 6: 62 1. Dual
( DMM ) defined by the volume of this
scaled by the coefficient D

arm manipulability measure
is ellipsoid
in the same manner as in

the single arm case.

OMM = fdet ( (JediT)=1 + (Jad2T)"t )]-172  (24)
_1V. Dual Arm force Ellipsoid
In this section , the equation of the dual arm force

ellipsoid is developed for two non-redundant arms, i.e.

As explained in section III, we take the view
that the object
the

position of the two robots.

m = n,
is divided at the reference point and
the
and fz denote
at
object reference point by the robot 1 and robot 2,

end
the
the

and

reference is regarded as
Let fi

Cartesian force ( and moment ) vectors

object point

applied

let 71 and Tz denote the joint driving forces ( and
and robot 2. Let f be the

resultant force ( and moment ) applied at the object

torques ) of the robot 1

reference point. Then we have

Tyo= (00T fy (25)
T2 = J2(02)7 f2 (26)
Also,
f = fi + f2
CEN P SR PR
= J17T U2 T T 7
[ 4 2 ] [: T; :] 27)
Let
K o= [ 37T U277 ] (28)
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Ty
Lo (29)
Then, (27) becomes
f = K T (30)
and the unit sphere in R20 defined by
Sz o=

can be transformed through K into an ellipsoid in R» .

fnz = 1T
= fT (k9T K+ F
= fT (K KT )+ f
= [ FfT(KK" )"t f = 11 (31)
Hence,
fT [ Jb-T J2=T ] Ji-! St f o= 1 (32)
o Cusd|
fT [ Jp=Tdg=t o+ Jp~Tdp~t 1-t f = 1 (33)
T L (UediM=t + (J2d2M-t 17 fF = 1 (34)

The above equation (34) describes the dual arm force
ellipsoid in R» space, and its volume Vdr is given by
Var = D/ W (35)
, and this ellipsoid describes the characteristics of
the force that can be applied at the object reference
by the two robots, unit

point corresponding to all

norm vector of 7 = [ 71 712 ]

Ellipsoid and Force Ellipsgid.

Inspection of the eguations (21) and (34) shows that
the relationship between the dual arm manipulability
ellipsoid and the dual arm force ellipsoid is the same
as that between the single arm manipulability and the
single arm force ellipsoid. Let the eigen vectors
of [(J1d1T)"t+(J2J2T)"t] be denoted by

va and its corresponding eigen values be denoted by ¢

Vi, V2, ...

12, 922, ..., ¢a? The equation (34) represents an
ellipsoid with principal axes $ivyi, d2vz, ..., Suve ,
and equation (21) represents an ellipsoid with
principal axes (1/¢()~tvy , (We2)"tva , ..., (1/¢
w) " tvam . Hence the lengths of the principal axes of the
two ellipsoids is in inverse proportion which is the

relationship between the two ellipsoids in the single

arm case. The point is also made clear
(4), (11) and (22),(35).

to that in [9] where the above inverse relationship is

in equations

This result is on the contrary

denied.

The relationship between the single arm and the dual
arm manipulability measures are given next.
Let the
manipulability ellipsoid of arm |
by Esm1i and Esw2 such that

Lemma 1. inside of the single arm

and arm 2 be denoted
{0 XD (M-t x < 1)

{x0 X7 (JadeDt x < 1)

and let the inside of the single arm force ellipsoids
be denoted by Estq and Ess2 , s.t.

Eomi =

Esmz =



Esgy = { f fT (JidyM-t f < 1}
Estz = ( F FT (Jed2™)-t £ < 1}
Also let Edm and Ear denote the inside of the dual arm

manipulability and force ellipsoids , s.t.

Eaw = (% ! XTI D=0 + (J2d2™ 1] x < 1)

Ear = { f 1 FT[(Jydy™) "1 + (Jad2T)-t]-1f < 1}
Then,

Faw < Eemy , Eda < Esn2 (36)

and Far > Eetr ,  Edf 2 Eefz (37)
(pf)

Let a be any vector that lies on the single arm

manipulability ellipsoid of arm 1 such that

aT( JydtT )"t a= | (38)
Let B be any vector that lies on the dual arm
manipulability ellipsoid,and let g be the function

representing this ellipsoid such that
a(B) = BT [ (JrdiT)"t + (J2d2M"t 18 = 1
Then, since JiJi T and J2J27 are positive definite,

g(@) = aT [ (JrdiTt + (Jzd2T)"1 1 @
> a' (1M a
= (39)
by (38). Equation (39) holds for any vector a on the
single arm manipulability ellipsoid of arm ! and thus
this ellipsoid includes the dual arm manipulability
ellipsoid. This relation is the same for the

manipulability ellipsoid of the arm 2 and (36) s
proved.

Let » be any vector on the single arm force ellipsoid

of the arm 1 such that

A N PRV FRLED I

Let & be any

let h be the function representing this

(40)

vector on the dual arm force
ellipsoid, and

ellipsoid such that

h(g) = 6T [ (Jidi Tyt + (Jod2M)-t 17t 6 = 1
Then,
h(p) = 7T 0 (Jedi Tt v (J2d2M-t 7ty
< 7T (M
= 1 (41)
by (40). Equation (41) holds for any vector 7 on the
single arm force ellipsoid of arm 1 and thus this
ellipsoid is included inside the dual arm force
ellipsoid. This relation is the same for the force
ellipsoid of the arm 2 and (37) is proved. [ ]

In other words, the dual arm maniputability ellipsoid

is contained inside the single arm manipulability

conversely , the single arm force
ellipsoids the dual

ellipsaid. As a consequence of this lemma, we get the

ellipsoids, and
are contained inside arm force
following lemma 2.

Let the single arm manipulability measure of arm 1
and arm ? be denoted by SMM1 and SMM2 respectively, and
let the volume of the single arm force ellipsoid of the
two arms be denoted by Ves: and Vef2, s.t.

SMM1 = [ det (J1dsT) J172
sMM2 = [ det (JzJ2T) 1172

(42)
(43)
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Vefy = D [ det ( JyyT ) ] 172 (44)
Vefz = D [ det ( JaldoT ) ] 172 (45)
Lemma 2 . The dual arm manipulability measure

is less than the single arm manipulability measure of
each arm, 1i.e.

DMM < min [ SMM1 , SMM2 ] (4n)
and the volume of the dual arm force ellipsoid it
greater than either volume of the single arm force
ellipsoids, i.e.

Var 2 max [ Verr , Verz ] (DR |

The lemma 2 indicates that the the manipulability
measure defined in (24) can not be greater than either
of the two individual
This implies that

a singular position,

arm’s manipulability measure.
if aone or both of the two arms is in
then the single arm manipulability
and the dual

and hence the dual arm is in &

measure becomes zero, arm manipulabilit
measure must be zero
singular configuration. This result of course agrees
with the human intuition.

The definition of the dual arm manipulability measure
in this paper differs from the works in [8], and [9] in
the following respects. All the definitions are based
on the volume of the dual arm manipultability ellipsoid.
thisg

drawn from the exact equation of

However, the definitions in paper and [9] are
the manipulability

ellipsoid obtained by transforming the unit sphere in

"o ]
from the

o = [0

is drawn

while the definition in [8]
that

represents the intersection of the two arm's individual

space,
ellipsoid approximately

ellipsoid. Hence, the manipulability

this

manipulability

ellipsoid in paper and in [9] are based on the
1912+ 0412

while that in [8] is based on the subspace Sz of

subspace Si of RZn | where S1 = (D¢ 82) !
= 1}
= ({0, 02) | 16112 = 1 and 10212 =1 ).
is that the
is defined in the task space R"

RZn where Sz
The second difference
in [8]
which is natural since the motion and the force vectors
of the belong to R®
manipulability ellipsoid in [9] is defined in R%® which

manipulability in
this work and

object However, The

includes redundant dimensions.

_.VI. Examples

To illustrate the properties of the definitions

presented, we take a dual two link revolute arm as an
examples. In figure 3, Two revolute arms forming a
closed kinematic chain is shown. All link lengths are
equal to one meter for convenience, and the base
coordinate coincides with the base of the arm 1. The
bases of the two arms are seperated by two meters in x

direction, and located at (0,0) and (2,0). The arms are

assumed to be holding a imaginary point mass object.
The manipulability measure of the two robots, SMM!

and the dual

arm manipulability measure (DMM) is shown in figure 4c.

and SMM2 are shown in the figure 4a , 4b,

The manipulability measures reduces lo zero at the edge



of the common workspace, and the DMM is symmetric over

the workspace as the two arms are identical and the
link lengths are all equal.

The manipulability ellipsoids for the two single arms
and the dual arm are presented in figure 5a, 5b and Sc.
DMM is less than SPM! and SMM2 as shown in lemma 2 and
vanishes to zero at the edge of the common workspace.

The force ellipsoids for the two single arms and the
dual 6b and 6c.

of the dual arm force ellipsoid is greater than that of

arm are shown in figure 6a, The volume

the single arm’s force ellipsoid as shown in lemma 2,
and approaches to infinity at the edge of the
workspace.

__VII. Conclusions

The concept of the manipulability measure of the
robotic mechanism is extended to the dual arm forming a

closed kinematic chain. New definitions of

manipulability and force ellipsoids are drawn by

transforming the unit sphere in dual arm joint velocity
space and dual arm joint torque space to Cartesian
velocity space and Cartesian force space respectively.
The manipulability measure is defined by the volume of
the dual

arm case.

arm manipulability ellipsoid as in the single
It is shown that the definitions presented in
this paper for manipulability ellipsoid and the force
the

properties as that existing in the single arm case.

ellipsoid share same inversely proportional
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