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Abstract

This paper presents a method for Che oplimal cootral
of the distributed parameter systems(WPSs) by a hiera-
rehical computatianal procedure. Approximate lumped

parameler systems (LPSs) are derived by using the
Galerkin method employing the Legendre polynomials as
the basis functions. The DPSs however,are transCorned
into the large scale LPSs. And {hus, the hierarchical
control scheme is intraduced to delermine the oplimal
control inputs for the obtained LPSs. In addition, an
approach to block pulse funclions ig applied to sojve

the optimal control problems of Lhe oblained LPSs.

The proposed method is siwple and efficient in compul~

ation for the optimal control of LPSs,

1. Introduction
One of the main difficultics one mects in the opli-
mal cantrol of DPSs lies obviously in the size of the
problem, in particular for numerical computalions.

A natural idea is therefore to use, among other

things, asymptotic methods, in oder to sinplyify the

sistuation. This Ldea has been used extensively lor

the optimal controt of system governed ordinary dif-

ferential equations(LPSs),

The approximation methods that are founded most often

in the literature for the implementation of linear

distributed parameter controilers include finite dif-

ferencing, eigenfunction expansion, orthogonal col-

lcation, and Galerkin’s method{1-6],
This paper presents a method For the optimal control
of the DPSs by a hierarchical computational procedure,

Approximate LPSs are derived by using the Galerkin

method cmploying the shifted Legendre polynomials as

the basis functions, Such approximation involves

expanding the solution of the partial di{ferential
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cqual fon as a set of shifted Legendre polynomials.

Then il is required Lo determine the number of terms
that wust be relained in the series approximation to
oblain a satisfactory solution, Incrcasing the number
of  terms generally increases solution accuracy and
always increasces solution computation load and systen
Lhe DPSs are transformed into

dimension, Therefore

the large scale LPSs. And thus, the hierarchical con-

trol scheme is  introduced  to determine the optimal

control inputs for the obtained LPSs. An approach to
block pulse funclions is applied to solve the oplimal
cantrol probless of the obtained 1.PSs.

The orthogonal functions have been widely applied Lo
funclions

control theory, The particular orthogonal

used up Lo now are  the block pulse functions(BPFs),

the Walsh functions, shifted Legendre polynomials and
ete[2,7-91.
the method

The main feature of of using orthogonal

functions is that it reduces the caloulus of certain

differential  equations (o a set linear algebraic
equat.ions through the use of the well-known operation

matrix for integration via orthogonal functions.

2. Least Square Approximate Systems of DPS

Consider a general linear DPSs wodelled by
st XMy, D ruly, ) (1)

with initial conditions,

x(y,0)=x.(y) (2)
and boundary conditians,

Ax(y, 1)=0 (3)
linecar tiee-iavariant

where ) s an nxn matrix  of



partial differential operators. a% a
N = az +oar ot o

. . 2 .
The problem is to find the control variables u(y,t) ay ay

which minimize the following cost function,d, from g, (5)-(8) we can oblain the following equation

o 4 el L),
=] T T, DRy, DTy, URuGy, Ddydt (4) XA vu (L) an
1] )
A =(- '(z'i”)u' yograg | vand
By using the shifted Legendre polynamial functions, - vy Azbiatdtlog o

we  reduce  the optimal control problem of a DPSs to Yy 1
5 ¢ ¢ p [o1s Lop el o gii= jol i}yw‘"(y)"t&w'(y)dy
form of the linear regulator problem,

Functions x(y,t} and u(y,t) which are absolute The vost funcltion, as shown in eq.(4) becomes
integrable in Osysys for avy time O-tsts, can be Ly
J= AT (L) T (DR U () dU (12)

represented by a finite series of the shifted Legondre 4o
palynamial series, ¢ ily), where Q= Qedl, R =Redl, H=[hij]

x¢ "5 ( c hij = o o X\}

x{y, )= % @i (L)1) ¢ {y) (%) L ve(2ist) =

(=0

" N-1 A partial differcnlial eqation of DPS s, thus, trans-

u(y.t.)=xz:“ 7 (D@D V) ®) forwed into a set of ordinary differential eqation of
where a i and y.oare the expansion coefliticnts of LPS, More leading lerms of ai(large value of N) will
the shifted Legendre polynomial functiovns. lead to the computational results more acourately.
Using in oq.(1) the approximations of eq.(5) and eq. However, DPSs  are Lransformed into  Lhe large scale
(6) yields the error. LPSs. And thus, the hierarchical control scheme ic

ely. )= 'éftd. )A((y,t.)~1hﬂt(y,t,)+‘l,;(y.t.) (7) introduced in optimal control of the oblained LPSs.

The Galerkin approach[2,9] is to choose ai(t) such
that. ta orthogonalize the error  with respect to Che 3. Hierarchical OpLimal Control Scheme of DPS.

priori chosen basis function @ .(y), i.¢, such that

Dynamic optinization for an interconnected systen

[Tetr.0 g ay=o @
0 can be expressed as
Take the differential operatur as norty
min J=%5 | i TQix: () +ui T(ORu, (L) dt (13)
w1400

= P .
D = A ay + Ao

) where Qi and R; arn positive semidefinite and positive
Introducing eq.(5) and (6) in eq.(7), and carring out ¢ Biand Rioare j P

. . Jjefinite respoctively, and subject to
the integration in eq.(8), yields e ‘ P y

1

d Nt i (D=6 () +Biu () +Ciz: (1) (14)
~aa ()= 2 flJAXaJ<L)"A()al(tv)+Tl((-) (9) ALY
dt. J=0 n
X ( ) ; ci(t) = ¥ bigx (L) (15)
where N 2441 I’Yf ¢ inf
], i) dyz,/)‘(y)dy where zi denotes the interconnection, the Lagrangian

In matrix form, ¢q.(9) is writteon as [ can be witten as

H n {tr
:’}t x(£)=Ax(t) +u(t) ‘ (10) ]':}:" ifxx (172 % TCOQixi (6) + 1/2u: TR, (L)
here, A=-Aj@F+Ao®], F={fi;] °
wers e ‘(’ : b 0 FATGiCE) = 5 Ligxy (£)
ao(t - rolk J=t
(t) (t)
x(t) = a::l L ou(t)- TI + piT() (- :§1 xitAixi+Biwivrcizi)ldt  (16)
awn-1 (1) 7 N-1 (1)

where A i(() is the Lagrange multiplier and pi(t) is

and the symbol® denotes the Kronecker product[10]. an adjoint variable

Simi i he case of G ifferntial operator as - . .
Similarly, in the case of the differntial aperator as The coordination rule for the second level using the
interaction-prediction principte[11] is from iteration

1067



Dta K+t

K

A (L)
zi (L)

(17)

Kot Lripi (L)
): IJJXJ(L)
J=1

‘he convergence of this algorithm has been proved by
rakshara[12],
Consider the lower-level problems, the Hamiltonlan

for the i-th subsystem can be writlen as

n
Hi=1/2%iTQixi+1/2ui"Riui+ A i "Zi-L A ;Thjix;
J=t

+piTCAixi+Niui+Ciz;) (18)
and then, [rom the necessary condition yiclds
i (L)=R: BiTpi (L) (19)
. -1
0 (D= CO-BIRE B2 Tpi (1)4€47 5 (1) (20)
'W"’(tipl(L):_(JIXI(t»)"AlTpi(‘v)f_sj‘[AJT(L)lJi]T 2n
: it

In matrix form, eq.(20) and (21) is written as

(gtx&(t) =Hi{xi<t> L Nicw o)
Spico) piL] N
where xi(0)=xa , pilts)=0
A -BiRi™1B:
“‘=l—u, -A,T
N (0)=Cizi (L), Nzi ()= L AT 1T (23)
i=1

Let

(e, U= Doy (te, t) Pralte,t)

P2 (te,t) dzz(ts,t)

be the state transition matrix of eq,(22)
It is wel)l known that the state transition matrix has

the following property;

LB te,0 = ~d (e, UM; (24)
D (te tr) = 1

Integrating eq.(24) backward from tr to t, gives
1.
I—‘b(tr,t.):jt«b(tr,w}n dv (25)
£

Using eq.(22), from the relation

x(ts) x(t)] [tr N; x (1)
=P (ts, L) +j<{>(tr , ) dr= (26)
p(ts) p(t) ¢ N2
we have
rt
p(t)2= 2271 (te, 1) D2 (Le, =2zt (L, l.)J dieea)d
t 4

where, Q(te,t)= Pzo(te, TN (1) s dzalte, 1IN (L)

Let u(t) be a modification to give partial fecdback

control{tll, ie,
p(t)= KU x(L)+s(L) (28)
where K(t) is the local feedback gain and s(t) is the

open-loop compensalion veclor

K(t)= ~do~t (Lr, t) Doy (e, t) (29)
[t

s(t,)=-d)zz"(Lf.t)}Q(l‘f.’t')d’L‘ (30)
L

From eq.(19) and eq.(27), we abltain local control
vector for Lhe ith subsystem.
The task of coordinator levael is to improve Ni(t),
N2(t) such that the global optimization is achelved.
On Lhe second level,  the convergence is measured by

Lhe error criterion, where crror is  deflined as

L e R
j2;1I-Zx1‘(l.)l-lx(t)+J_);:II'ZZT(IZ)I-Zz(L) dt. (31)

[t
‘k—\".(;“
Ep=Ng i % (0) =Ny % (L)

Ez=Nzi%+1 (£)-Nzi% (L)

where

Once the second level, interaction error is suffici-

ent.ly small, an opltinum solutioa has been obfained,

4. Jlicrarchical Optimal Control via BPFs

ook pluse funclions(BPFs) ¢ (), k=1,2,3,--,n

defined in the interval [0,te) by

1, for (k=)ts/m < t < kte/
brlt) = [ or (k-1)ts/m t/m (12)

l‘ 0 , otherwise

The integrals(6] of BPFs can be approximated as
t Lr B tr »
Bpr(r)de=s - Fh (bl o () (33)
[ WoI=k+t 2m

using m BPFs themselves,

Similary, The backward integrals{6] of BPFs can be

approximated as

¢ Ly k-t Le
{ P rlrydi=- = Veh (L) ~ - epr(t) (34)
It [ 2m

(=
Consider the BPF application to hierarchical opl.imal
control of DPS.
The subscripl. i for the ith subsystem is omnjtfed for

the sake of simplicity. In this section, capital
letlers with Che subscript(y) denote the coefficients
of jth BPFs,

Tntroducing the oq.(34) in eq. (25) , we have
Busl1~ 5=t

Pi=dyeil it 5KMI- M- (45)



where | n-1,m-2, --,1
From eq.(29), we obtain

Ky = ~(B22)y (Pas)y (36)
From eq.(30) and eq.(31), using eq,{34),we obtain

Sn=- ;;::n(@zz)‘.: Qu
" . (17)
S5=Syvi+ SEI(P22)J Qis(Dr2)j+182,01]
(J=w~1,m~2,..,1)

where, Qi=[(P2g) N j+(D22)jN2j]

From eq.(22) and eq.{(28), since

t
L)(.(t)=[lh—ll.R."‘lh'rl(i(l.)Jx.(f.)+

d
Ngi (8)-BiRi~1BiTs (L) (38)

integrating eq.(38) from O to tr and then by using oq
(33), we obtain
X =Moo [x(0)+V, ]

»
Xj+t=Maj[MpiX,+Vi+c#Vil, (j=1,2,...,m) 0
where Moo=l 1= 55 [A-BR-1B7K, 1=
Moj= 1+ 50 [A~BR-(RTK; )
Vi= SE-[N(-BR-1BTS, ]
From eq.(19) and eq.(28), we have
Py o= KXy + Sy (40)
Uj = -R-IBTP, (41)

The task of coordinator level is to jmprove Npi(t),

N2i(t), such that the global optimum is acheived.
From eq. (17) and ey, (23), we oblain

Ny i)y = (C)(Z:), (42)

N
LICAT) e )y 3T (43)

r=t

(NZI)J

Introducing oq.(42) and eq, (43), Equation eq.(31) is

written as

tefn 7w nom

p=—-- Y TE(TEi+| X ¥ FE2TEz (44)
n IR IER WS

<h, Er=[(Ngi) ¥+ -(Ngi) iX]

E2=[(N2i) jX*1~(N2i)¥I

Once  the global system interaction error is suffici-
ently small, an optimum solution has been obtained.

u(t)

the coefficient. vector composed of the expansion

However, the obtained control and state x(t)

are
the shifted Legerdre polynomial fun-

u(y,t)

coefficients of

ctions. Therefore the optimal control and

state x(y,t) is determined by inverse Legendre trans-—

formation,
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5. Numerical Fxample
Exemple 5,1

For the Cirst example consider the ane-dimensional

diffusion equation{9,13],

ax(y, L)
VL 9w 0 uly, )
at
h o
where =
‘ dyl’t

and ioitial condition

=1,

x(y,0) oy

and boundary condition

_ax(y,t)
ay

=0, al y=0 and yr=4,

The ebtained LPS by proposed method, for N=§, is

expressed ag

g(x(t.)=Ax(l.)+l'lu(1.)

x(0)=x.
where 00 0 0 0
0 -0,75 0 ~-1.7 0
A=[0 O -3.75 0 -6.75
0-0.75 0 ~10.5 0
0 0 ~4.7% 0 -22.5%

B=f, xo=[3 2/ 0 0 01T

The cost function becownes

"t
=] TOR K TR (L
't 0o 0o o o
03 0 0 0
C=R'=zyr | 0 0 5 0 0
00 0 7 0
00 0 0 9

Here the system can be decomposed into two subsystenm,

that is, subsystem 1 and 2 consist of states xi, xg,

x3 aud x4, X&, respectively.

For the second example, conslder the DPS described by

the partial differential equation

9 ' 2 2
gy x(y,th+p o Lix(y, t)4

at 00

6] X
2]u(y.l,)

”( x(y‘”:l-"l ()l

x(y,0)=x0(y), x(0,t)=0, x(yc,{)=0

Xy (y,t)
xz2(y,t)

l+y

wherre
1+y

B x()(y)={

x(y,t)=

The problem is to find the control vector u(y,t) which

minimizes Che following cost. function, J,



(LY
J=5€J [OXT(9]t)Qx(y,t)+Ru2(y,t)dydL
[V IR

where QI1,R=1,ts=1,yr=6.0
The obtained LPS for N=5, is writlen as

3tx(L):Ax(f)+nu(L)

x(0)=xaq
where -
xo(t) uo(t)
x(t)={xs (t) |, ull)= [ug(t)
x2(t) uz (1)
x3(t) uy(t)
x4 (t) us ()
v
_xpit) _furi(t)
x’(t)_lxz‘(t) s uilt)= uzi(t)
-2 2 1 0 ¢ 0730 0 O
2=-2 0 0 0 0 0 0 0 O
0 0-2 25/30 0 0 4% 0
0 0 2-2 0 0 0 0 0 0
A=| O 0 0 0~2 27/30 0 Q

0O 0 0 0 2-2 0 0 0 0

0 0 0 0 0 0-2 2 3 0
0 0 0 0 0 0 2-2 0 0
O 0 0 0 0 0 0 06-2 2
¢ 0 0 0 0 0 0 0 2-2

B=1, xo=[4 41 1000000]T

The cost funclion becames
\Lf
J =Y xT)Q x(t)+uT{(t)R u(t)dt
J0

where Q= QuF, R'=RaF.

Here  the system  can  be decomposed into  five sub-

systems of equal dimensions,

6. Conclusions

In this paper, the optimal control of DPSs is salved
by a hicrarchical computational procedure,
The system state variable and the control variable
are expressed in terms of the shifted Legendre poly-
monial function of space coordinate.
The hicrarchical control scheme is  introduced tao
determine the optimal control of the large scale LPSs
which is derived by using the Galerkin melhod,
An  approach to block pulse funclions is applied to

solve  Lhe optimal control problems of the obtained
L.PSs,

The obtained LPSs are converted into linear algebraic
equations by block pulse transformations. The solution

is obtained by solving these equalions.
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The proposed method is simple and officient in conpu-

tation for the optimal control of 0OPSs.
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