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ABSTRACT

We formulate optimal quadratic regulator
problems with trajectory sensitivity terms as a
optimization problem for a fixed controller
structure. Using well-known techniques for
parametric LQ problems, we give an algorithm to
obtain suboptimal feedback gains by iterative
solutions of two Lyapunov equations. A numeri-
cal example is given to illustrate the effec-
tiveness of the proposed algorithm.

1. INTRODUCTION

Trajectory sensitivity method was proposed
in 1960s as an approach to reduce the effect of
plant parameter variation in optimal regulator
problems [1-5]. This method utilizes a perform-
ance index including the trajectory sensitivity,
i.e., the derivative of the state with respect
to uncertain parameters. Unfortunately, the
optimal solution for this problem is difficult
to obtain. Several suboptimal approaches have
been proposed to compute feedback gains. Howev-
er, heuristic approximations are used in these
algorithms.

In this paper, we propose a new approach to
this problem. We consider a continuous-time
time-invariant linear plant. We assume that all
the state variables are measurable without error
and that the system matrix and the driving
matrix contain uncertain parameters with known
nominal values. As usual, we consider a perform-
ance index consisting of the quadratic forms of
the state, the control input and the trajectory
sensitivity vector. It is reasonable to re-
strict our attention to a linear time-invariant
controller which generates a linear combination
of the measured state vector and the trajectory
sensitivity vector. Imposing this restriction on
the controller structure, we shall determine the
feedback gains in the controller such that the
performance index is minimized.

To formulate this optimization problem,
construct an extended system consisting of the
plant model and the trajectory sensitivity
model. The performance index is clearly quadrat-

we
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ic with respect to the extended state vector.
The optimization problem is reduced to find a
state feedback gain matrix which minimizes the
quadratic performance index. This problem could
be regarded as a parametric LQ problem [6] which
optimizes the feedback gains feor a controller
with a fixed structure under a quadratic per-
formance index. However, most of parametric LQ
problems deal with output feedback controllers.
We must construct an algorithm efficient for
this specific problem and clarify properties of
the resulting control system.

Assuming that the initial state vector of
the extended system is a zero mean random varia-
ble with a known covariance matrix, we can
transform the problem into a matrix minimization
problem. We give a descent Anderson-Moore type
algorithm [6] to obtain the minimizing feedback
gains by iterative solutions of two Lyapunov
equations. The descent condition is satisfied if

a step size parameter in the algorithm is
sufficiently small. We also clarify the effect
of the initial covariance matrix on the solu-

tion. To illustrate the effectiveness of the
proposed method, we give a numerical example.

2. PROBLEM FORMULATION

Consider a linear time-invariant plant de~
scribed by

X = Ax + Bu, (2.1)

y = Cx, (2.2}

where xeR", yERl and ueR™. We assume that all
the state in (2.1) can be measured without error
and that the matrices A and B contain uncertain
parameters with known nominal values. Define a
vector consisting of the uncertain parameters as

p=1[p;py - pl. (2.3)
The performance index is given by
@
] = J [¥’Qpy + ypQgy, + u'Ru] dt, (2.4)
0



where Q1>0' Q2>O and R>0 and the suffix p repre~
sents partial differentiation with respect to
uncertain vector p. The second term in (2.4) is
introduced to reduced the trajectory sensitivity
with respect to the plant parameter variation.
It is well known that the optimal control mini-
mizing the performance index (2.4) is difficult
to obtain. The following formulation to obtain a
reasonable suboptimal control law can be regard-
ed as a simplified version of the formulation
given Wagie and Skelton [5].

Differentiating the both sides of (2.1) and
(2.2) with respect to p, we can construct the
sensitivity model as

ip = Apx + Rxp + Bpu + ﬁup, (2.5)
vp = Cxpe (2.6)

where
{“1 = block diag{[-][-] 1. (2.7

We restrict our attention to a linear
time-invariant control given by

u = -Kix - szp. (2.8)
Assuming that (xp)p=0, we obtain
uy = 'lep' (2.9)

From (2.5)-(2.9), we can construct the extended
system given by

X = AX + Bu,

(2.10)
Y = CX, (2.11)
where
X = X Y = y
*p ], s |,
A 0
A= { e J (2.12)
A, A-BKp |
By |, 0 Cj.

Then the performance index (2.4) can be rewrit-
ten as

@

J = J {Y'C’QCY + u’Ru] dt,
0
Q 0

S|

In addition, we can write the linear control law

(2.13)

where

(2.14)
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(2.8) as
u = -KX, (2.15)
where
K= (K Kol. (2.18)
Consequently, the problem is reduced to find a

control gain matrix K in (2.16) minimizing the
performance index (2.13) for the extended system
described by (2.10)-(2.12). This optimization
problem locks like a standard LQ problem.
However, note that the system matrix A for the
extended system contains the feedback gain
matrix K; to be determined. Unlike the standard
LQ problem, we can not reduce the optimization
problem to a solution of a Riccati equation.

As a numerical method to obtain minimizing
feedback gain matrices, Wagie and Skelton [5]
have proposed an algorithm based on the itera-
tive solution of a Riccati equation. In the next
section, we give a new algorithm to obtain mini-
mizing gain matrices.

3. A NEW ALGORITHM

Under quadratic performance index, several
numerical algorithms have been proposed to
optimize feedback gains in a linear time-invari-
ant controller with a fixed structure. Mikild
and Toivonen [6] have called this class of prob-
lems as a parametric LQ problem. A commonly used
method is the descent Anderson-Moore algorithm
[6,7] which requires iterative solutions of two
Lyapunov equations.

The problem formulated in the previous
section could be regarded as a parametric LQ
problem. However, the problem differs from the
standard parametric LQ problems in that the
system matrix A for the extended system (2.10)
contains the feedback gain matrix Kl to be
determined. In spite of the difference, tech-
niques for parametric LQ problems can be applied
for the problem including the trajectory sensi-
tivity terms. We have the following result.
Proposition 1: Assume that the initial state
X{0) is a zero-mean random variable with the
known covariance matrix IIO which is positive
definite. Let K denote a feedback gain matrix
minimizing the averaged performance E[J], where
E[-} denote the expectation and J is defined in
(2.13). Then, it is necessary that there exist
positive definite solutions P and M of the
following Lyapunov equations.

P(a-BK) + (A-BK)'P + C’QC + K'RK = 0 (3 4,

M(A-BK)' + (A-BK)M + T4 = 0 (3.2)

In addition, K satisfies the following relation.

K =rYe'P+ (T o1y,

(3.3)



The matrix " in (3.3) is defined as

h ~ h ~
U= 2 BarMig)yy + 2 (B7PagMag) sy (3.4)

where we have défined the partition of the
matrices as ’

n nh nh

P P n M n

P = 11 12 } M = { 12 }

Py, Pyy [nh My, |nh
and (')jj dencotes the j-th nxn diagonal block
matrix.

Proof: Using (2.10) and (2.15),
system is described by

My1
Ma1

(3.5)

the closed loop

X = (4-BK)X. (3.6)
Then the performance index (2.13) can be rewrit-
ten as

®

J = [ X'[C’QC+K’RK]X dt.
0

(3.7)

Assuming that the matrix (A-BK)
cally stable, we can express J as

is asymptoti-

J = X' (0)PX(0), (3.8)

where the matrix P is a solution of the Lyapunov
equation (3.1). If the initial state X(0) is a
zero-mean random variable with the covariance
matrix TIO, we can express the average perform-
ance as

E[J] = tr [HOP]' (3.9)

Consequently, the minimization of the averaged
performance index is reduced to a matrix optimi-
zation problem which minimizes the performance
index (3.9) with respect to a pair of the ma-
trices P and K satisfying (3.1). Define the La-
grangian for this matrix optimization problem as

L= tr [TIgP] + tr [M'{P(A-BK)
+(A-BK) "P+C’QC+K’RK} ],

(3.10)
where M is a matrix Lagrange multiplier. Then
LP=O and LK=O, where the suffixes P and K

represent partial differentiations, are clearly
necessary for the minimization. It follows
easily from (3.10) that LP=0 is equivalent to
the Lyapunov equation (3.2). We can decompose
the condition LK=0 into LK1=0 and LK2=0. Using
the symmetric properties of the matrices P, M
and R, we can show that the conditions LK1=O and
LKZ:O are equivalent to

B'P11+B5P21—RK1)M11

+ (B'Pyg+BpPos-RKo)Mgy + T = 0, (3 13
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(B’P11+B5P21—RK1)M12

+ (B'Pyp+BiPyy-RKpIMap = 00 (3.12)
respectively. The above two equations can be
combined into a matrix form as

(E’P—RK)M + [F 0] = 0. (3.13)

Noting that R>0 and M>0 by the assumptions,
can obtain (3.3) from (3.13). |
To obtain a numerical solution for (3.1)-

(3.3), we propose the following algorithm which
can be regarded as a modified version of the
algorithm proposed by Moerder and Calise [7] for
a class of parametric LQ problems. We denote
the system matrix containing the feedback gain
matrix K! by Al‘

we

Step 0: Set i=0. Choose KO such that the matrix
(AO-BKO) is asymptotically stable.

Step 1: Define P! and M® as the solutions of the
Lyapunov eguations

pleal-prty+(al-Bki) plecige

+(xby'rel = 0, (3.19)
Mial-ped) + (at-pxhMl « mp = 0, (3 15
respectively. )
Step 2: Using K', P!, and M!, obtain
akt = rlpplert ojdy ly -kl (g g
where
rle Y Gty v B (Bpoui)
i=1 21712735 7 52y 22M22735 (3.17)
Step 3: Set
ki = ki v qakd, (3.18)
where a 1is chosen sufficiently small.

Step 4: Stop if AK'~0. Otherwise set i=i+l and
go to Step 1.

For the feedback gain matrices generated by
the above algorithm, we can prove the following
descent property. .

Proposition 2: Let J! denote the value of the
performance index

It = tr [mgely, (3.19)
where P! satisfies (3.14). If LKi#O and the
step size parameter « is chosen sufficiently
small, then

I 5b ) =0,1,2. ... (3.20)
Proof: First, note that the gradient of the
Lagrangian with respect to K is given by



LK = -2{B’PM - RKM + [T" O0]}. (3.21)
Define the inner product between the search
direction (3.168) and the gradient (3.21) as

B(K) = tr [LgAK']. (3.22)

We show that B (K)<0 if LK#O. Using (3.16) and
(3.21) in (3.22), we have

B (K) = -2 tr [RVMV’], (3.23)
where
V=R - K+ R ol (5
Note that M>0. From (3.21) and (3.24), we have

LK:—ZVM, which implies that V#0 if LK#O. It
follows from (3.23) and (3.24) that B (K)<C if
LK%O. Therefore, if we define the Lagrangian at
the i-the iteration as

L= e (i)« ot [oul) (pR(at-pkh
+(at-BiK) piecrgor (k1) 'REI} T, (3.25)
we can assure that
it ¢ 1l i=0,1,2,.... (3.26)

Since P* satisfy (3.14), it follows from (3.19)
and (3.25) that L'=Jl. Consequently, the de-
scent condition (3.20) follows from (3.26). |
Remark 1: Moerder and Calise [7] have claimed
that a sequence of feedback gain matrices gener-
ated by their algorithm converges to a station-
ary point of the performance index. However,
Makild and Toivonen [6] have pointed out that
the proof given by Moerder and Calise [7] is
unsatisfactory to guarantee the convergence to a
stationary point. This observation also hold
for our algorithm. However, as is pointed out in
(6] for the algorithm of Moerder and Calise [7],
the condition (3.20) is practically enough to
achieve the convergence to a stationary point.
To guarantee the convergence to a stationary
point, we could use a modified version of the
sophisticated algorithm proposed by Makild [8].
Remark 2: Output feedback problems are often
formulated as a parametric LQ problem. For these
problems, it is not easy to find an initial
stabilizing feedback gain matrix. For our prob-
lem, we can easily find an initial stabilizing
gain matrix KO by solving a standard LQ regula-
tor problem. The solution can be computed by
use of the proposed algorithm for the perform-
ance index where we set Q2=0.

In our formulation, we have randomized the
initial state of the extended system. As for
the choice of the covariance matrix IIO, we
have the following trivial but important result.
Proposition 3: Let p be positive
Assume that the initial covariance matrix of the
extended state X(0) is given by pTy. Then the

a scalar.
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feedback gain matrix obtained by the proposed

algorithm is independent of p and coincides
with that obtained by the initial covariance
matrix Ilq.

Proof: Since trpH0=pot1'H0, the minimization
problem with the initial matrix pIIO is clearly
equivalent to that with IIg4. |
Remark 3: The above result suggests that the
relative values of the elements of the matrix is
essential. At present, we can not provide clear
design guide line for the choice of the initial
covariance matrix. We can treat this matrix as
design parameters like the weighting matrices in
the performance index (2.4). For the simplest
choice, we can consider the matrix in the form
Mg = diagl I, olpyls (3.27)
where we determine an appropriate value of o by
a trial and error method.

The structure of the proposed rcgulator is
shown in Fig. 1. We can easily obtain the
following result for the transfer function
matrix of the regulator.

Proposition 4: The transfer function matrix from
the plant state x(t) to the control input u(t)
is given by

K(s) = ~{I,#Ky(sT y-A+BRy) 1B, )71
{Ky+Kg(sI p-A+BK;) 1A ).

(3.28)

A
_Kl <
L
_.K2 -
AI>
x_ (1)
p .
B, b» s ° C f»yp®
A-BK

Sensitivity Model

Fig. 1 Structure of the proposed controller



4. A NUMERICAL EXAMPLE

the
we

To illustrate the effectiveness of
method proposed in the previous section,
present a numerical design example for a second
order plant with one uncertain parameter.

Consider a plant described by

. -1 0 1+p
X = X + u (4.1)
0 -2 1
y=1[011 -1lx, (4.2)
where p is a scalar uncertain parameter. We
assume that the nominal value of p is zero.

Soroka and Shaked [9] have pointed out that this
plant is extremely sensitive for the variation
of the uncertain parameter p. They have shown
that, if the standard LQ regulator is construct-
ed for this plant, the closed system becomes
unstable for infinitely small variation of p as
the weighting on the control input is decreased
to zero.

To apply our design method,
performance index as

we define the

@
J = [ [q1y2+q2yg+ru2] dt. (4.3)
0
We consider the initial covariance matrix Mg in
the form (3.27). Using the algorithm proposed in
the previous section, we compute the feedback
gain matrix. Note that, at each iteration, we
must solve the two Lyapunov equations for 4x4
matrices. As an initial stabilizing feedback
gain matrix, we choose K =[K1 0] where K? is
the optimal feedback gain matrix for the per-
formance index (4.3) where q2=0. We stop the
algorithm if the maximum element of AK! is less
than 10_5 In Table 1, we summarize the relation
between the step size parameter a and the
required number of the iterations for q1=qZ=L
r‘=10_3 and o=1. For the step size parameter a
greater than 0.9, the algorithm is divergent.
As the step size is decreased, the required
number of the iterations is increased. We have
the same feedback gain matrix as long as the

algorithm is convergent. As pointed out in
Remark 1, the algorithm is practically conver-
Table 1. Step size parameter a versus
number of iterations

a Number of iterations

0.9 (divergent)

0.8 80

0.7 96

0.6 113

0.5 136

0.4 172

0.3 230

0.2 3417

0.1 698
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Fig. 2 Response of the proposed regulator
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Fig. 3 Response of the LQ regulator

gent if the step size parameter is chosen suffi-
ciently small.

We compare the performance of the proposed
regulator obtained by setting q1=q,=1, r=10"3
and og=1 with the conventional LQ regulator
with q1=1 and r=10_3 First, we compare the re-
sponse for the initial condition x(0)=[1 0]’.
For three values of the uncertain parameter, we
show the response obtained by the proposed
regulator in Fig. 2. The corresponding results
for the conventional regulator are shown in
Fig. 3. Apparently, the responsc obtained by
the proposed regulator is robust against the

parameter variation while the conventional LQ
regulator provides the extremely sensitive
result.

Next, we compare the frequency domain

properties of the both regulators. Comparisons
of the sensitivity functions and the complemen-
tary sensitivity functions at the input of the
plant are shown in Fig. 4 and 5, respectively.

It is interesting to note that the gain of the
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Fig. 4 Sensitivity functions
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Fig. 5 Complementary sensitivity functions

sensitivity function at the low frequency region
increases as the weighting coefficient ap for
the trajectory sensitivity is increased. This
means that, for the variation of the parameter
p, the reduction of the trajectory sensitivity
does not imply that of the sensitivity function.
As shown in Fig. 5, the complementary sensitivi-
ty function for the conventional regulator
decreases 20dB per decade as is suggested by the
well-known Kalman inequality. It has Dbeen
pointed out that, due to the 20dB per decade
property, the conventional 1Q design often
provides poor robustness against unstructured
perturbations. For the proposed regulator, the
frequency region where the gain decreases at the
rate of 10dB decade appears as the weighting
coefficient a9 is increased. Although the gain
decreases at the rate of 20dB per decade in
sufficiently high frequency region, the proposed
regulator provides improved robustness against
unstructured perturbations in the frequency
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region where the steep decrease is achieved.

5. CONCLUSIONS

We have proposed a new algorithm for the
quadratic optimal control problem including the
trajectory sensitivity. In comparison with the
existing algorithms, the proposed algorithm has
clear meaning of approximation and the computa-
tional advantage. As is shown by the numerical
example, the frequency domain properties
achieved by introducing the trajectory sensitiv-
ity term can not be obtained by the conventional
LQ design method. A controller that is robust
against both structured and unstructured pertur-
bations could be designed by a systematic use of
the proposed algorithm, which is under current
investigation.
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