90 KACC 1990. 10. 26 ~27

A New Algorithm for Detecting the
Collision of Moving Objects

S. M. Hong

Department of Electronics
Kyungpook National University, Taegu, Korea

Abstract

Iterative algorithms for detecting the collision of convex objects whose motion is charac-
terized by a path in configuration space are described. They use as an essential substep
the computation of the distance between the two objects. When the objects are polytopes
in either two or three dimensional space, an algorithm is given which terminates in a finite

number of iterations.

It determines either that no collision occurs or the first collisicn

point on the path. Extensive numerical experiments for practical problems show that the
computational time is short and grows only linearly in the total number of vertices of the

two polytopes

I Introduction

A common problem in robotics is the detection of
collision between two rotating and translating objects,
where the rotations and translations are described by a
specified path in a suitable configuration space. For ex-
ample, time histories for the joint variables of two ma-
nipulators may be given and it must be determined if
and when each pair of constituent parts (links, payloads,
obstacles) in the three dimensional work space collides.

Usually, the objects are modelled by polytopes and
collision is detected by examining the potential contact of
a vertex with a face or an edge with an edge. The nature
and difficulty of the computations vary depending on the
approach and assumptions. Whatever the approach, the
computational time increases as MM, where M; and
M, represent the complexity of the polytopes (number
of vertices) [7,8].

In this paper we describe a new algorithmic approach
which has its origins in [1]. It applies to convex objects
and uses, as a substep, the computation of the distance
between the objects. If at a point on the path the dis-
tance is positive, the objects do not intersect and are, in
fact, separated by slab of thickness equal to the distance.
This means further collision-free motion along the path is
possible: the motion can be continued until the thickness
of the separating slab shrinks to zerc. The algorithmic
process consists of successive steps of this type. The main
computational effort occurs in two places: the determi-
nation of the distance between the pair of convex objects
and a root finding problem which corresponds to finding
the point on the path where the slab has thickness zero.

The approach is most effective when the objects are
convex polytopes. Then the distance computation is well
understood. See {2,4]. Furthermore, it is possible to show

1014

that a variation of the basic algorithm solves the collision
detection problem in a finite number of steps. Results of
computational experiments show that the computational
times are short and, unlike the prior methods, appear to
be proportional to My + M.

Il Problem Statement

To formulate the collision detection problem, it is
convenient to represent the spaces occupied by the two
potentially colliding objects by point sets K;, K; C
R™[7]. We keep m general because both m 2 and
m = 3 occur in practice. The sets represent objects
of fixed shape which undergo translations and rotations.
The translations and rotations are dependent on a config-
uration vector q which belongs to a configuration space

@. Thus,

K, = R(@)Ci+{pi(a)} £ {z = Riqu+pi(a): w € <(3.} :

21)
where for i = 1,2: §(q) is the translation vector, Ry(q) is
the m by m (orthogonal) rotation matrix, and C; C R™
is the set of points which describes the space occupied by
object i in its reference position and orientation.

The configuration vector moves alor.g a path in @
which is specified parametrically by a continuous func-
tion q : @ — Q. Here © = [64,8,], where q(64) is the
beginning point on the path and q(6.) is the ending point
on the path. We assume that the objects do not interfere
at the starting point and wish to determine the value of
6 where collision first occurs, or that no collision occurs
for all 8 € ©.

To be more specific, let

Ri(6) & Ri(a(8)), pi(6) £ 5.(a(9)), (2.2)

and define

Our objective is to solve the following problem.
Collision Detection Problem (CDP) Assume
K1(6)) N K(6,) = ¢. Find the collision point

6* = min{d € @ : K1(0) N K4(8) # ¢} (2.4)
or show that
K,\(0)NK;(0)=¢ forall 6O . (2.5)

IIT1 Geometric Preliminaries

For 2,y € R™ and X C R™: (z,y) is the inner prod-
uct, |z| = 4/(z, z) is the Euclidean norm, co X is the
convex hull of X. The hyperplane {z : (n,z — y) = 0},
n # 0, separates X\, X, C R™ if (5,2 —y) > 0 for all
z € X; and (—n,z —y) > 0for all z € X,.

A polytope is the convex hull of a finite point set.
Thus, e.g., when C; is a polytope it may be represented
by

Cj:CO{!U,‘_,‘Zj:l,.‘.,M.'} . (31)
For a given polytope it is desirable to make M; as small as
possible. In this case, w;;, j = 1,..., M;, are the vertices
of the polytope. If C; is the polytope (3.1), K;(9) is also
a polytope:

Ki0)=co {2;(0):5=1,...,M}, (3.2)

where
2j(0) = Ri(O)wi; + pi(9) - (33)
The support function of a compact set X C R™, hy :
R™ — R, is defined by

hx(n) = max{(n,z): 7 € X} . (34)

A support mapping of X is a function sx : R™ — X such
that
(m, sx(n)) = hx(n) .

Thus, sx(n) is a point in X which is farthest in the di-
rection 17; see Figure 1. The supporting half space in the
direction n is:

(3.5)

Sx(n) & {=: (n,2) 2 hx(n)} .

When K,(9) is the polytope described by (3.2) and
(3.3), it is easy to determine the support function and
mapping:

hxn(n) = max{(n, z;(8)) : j = 1,..., M},

sk, 0)(n) = 2i;(9), j satisfies (n, 2,;(0)) = hx,n(n) -
(3.8)

(3.6)

(3.7)

1015

Numerically, (3.7) and (3.8) are obtained by comparing
the M; inner products (n, z;;(6)}.

An application of the above definitions is shown in
Figure 2. We wish to know if two compact sets K; and
K; can be separated by a hyperplane with normal 7,
n # 0. The set

Lz, k:(n) = Sk, (=) N Sk, ()

is the thickest slab between K, and K, whose bounding
hyperplanes have the normal vector 5. A separating hy-
perplane exists if and only if Ly, x,(n) is not empty. It
is easy to see that the thickness of the slab is given by

ga(n) = =l (b (=n) + hxy(n)) . (8.10)

If ik, x,(n) = 0, K1 and K3 may or may not intersect, but
Ik, x:(n) > 0implies K1 NK; = ¢. Of course, Ik, x,(n) <
0 is possible even if K1 N K3 = ¢.

The distance between two compact sets Ky, K; C R™
i8 defined by

d(Ky, K3) = min{lz, — 25| : 51 € Ky, 25 € K} . (3.11)

(3.9)

If vy € K., v; € K; solve the minimization problem
(3.11), ie, |14 — 1n) = d(K1, K3), 11 and 14 are a pair of
near poinis.

The convexity of K; and K, does imply that v, — 13 is
unique [3]. It also leads to the separation of K, and K by
a slab. See Figure 3. 1, is a suitable choice for s, (—£).
Similarly, v; is a suitable choice for sy, (£). Thus, by
Figure 2 Lx, x,(§) = Sk, (=€) N Sk,(£) is a separating
slab for K, and K,. Moreover, (3.10) shows that the
thickness of the slab is Iy, x,(£) = d(K1, K3) = |§]. Tt
can be shown that n = £ maximizes lx, x,{n). In this
sense Ly, x,(£) is the best separating slab.

In subsequent sections, K; and K; depend on 6 in
the manner defined by (2.3). We will use 24(8), 12(8) to
denote a near point pair in K,(6), K;(0) and let £(6) =
11(6) — 14(8). To avoid a notational morass the following
conventions are adopted:

d(8) = d(K:1(8), K2(8)) , (3.12)
L(6;n) = Lx,(8).x0)(n) , (3.13)
16; 1) = Ik, (0, 103(1) (3.14)

IV The Basic Algorithm

The preceding separation results motivate the basic
algorithm for solving the CDP. The algorithm is an iter-
ative process which produces an increasing sequence of
points in @. It begins with d, = 6; and after k steps
assures that no collision occurs on [6;,6,). A geomet-
ric interpretation of the step that produces 6,,, > 6, is
shown in Figure 4 and is justified as follows.

Since Kl(o,,) an(og) = ¢,

dy2d(6,)>0 and & 2 ¢(6)#£0. (4.1)

Assume K,(0;) and K;(6;) are convex. Then the slab
L(6%; €4) separates K1(60;) and K2(%:) and has thickness

di. Now consider the slab L(8; §;) for @ > 6,. Its orienta-
tion is fixed (the bounding hyperplanes have normal §;)
but its thickness and position vary continuously with 8.
As long as the thickness is positive K1(8) N K,(9) = ¢.
This suggests that 83,1 be determined by allowing 8 to
increase until: (1) the thickness is zero or (2) 6 = 6,. In
case (1) either €4y = 9* or 6, > 6; and there is no
collision on {6},6;41]. In case (2) it follows there is no
collision on ®. We now formalize our geometric descrip-
tion. The parameter ¢ > 0 governs the accuracy of the
algorithmic solution .

Basic Collision Detection Algorithm (BCDA)
Step 1 Setk=0and 4, = 4,.
Step 2 Determine d; and ;.
Step 3 If dy < ¢, stop and set 6§ = 6;.
Step 4 Solve, if a root exists, the problem of finding
the smallest root of 1(6; &) = 0 on {6, 8,.]; Equivalently,
find, if it exists, the smallest root of

Fi(0) = ki, (9)(— &) + hiyo)(&) = 0

on {6, 68,]
Step 5 If the root finding problem has no solution,
stop. There is no collision on @.
Step 8 Let 6iy; be the solution of the root finding
problem. Increment k by 1 and go to Step 2.

Using methods similar to those used in [1] it is possi.
ble to prove that the algorithm perfcrms in a reasonable
way [6]

(4.2)

Theorem 4.1 For: = 1 2 assume that C; is com-
pact and convex and the elev.ents of R, and p; are Lips-
chitz continuous. Then for ¢ > 0, BCDA has the follow-
ing properties. (i) It stops in a finite number of steps.
(i) If (2.5) holds and € 1s chosen so that € < d(8) for ali
8 € O, the algorithm stops in Step 5. (ii1) Suppose col-
lision occurs in @. Then the algorithm stops in Step 3.
Moreover, § < 6* and 6* — § can be made as small as
desired by a suitably small choice of .

Result (iii) implies that with ¢ = 0, BCDA gener-
ates a convergent sequence {0;}. Unfortunately, the rate
of convergence may be quite slow. The reason for the
possible slow canvergence is detailed in [5].

Another approach for generating an (6} in the direc-
tion of £(8) is possible when K,(6) and K,(8) are poly-
topes. As discussed in the next section, this approach
causes the CDP to be solved in a finite number of steps.

V The Polytope Algorithm

Throughout this section it is assumed that m = 3
and K1(6), K3(0) are the polytopes given by (3.2) and
(3.3). Generically, K1(8*) N K,(6*) is a single point with
only two types of contact: a vertex-facet contact and
an edge-edge contact with edges which are not parallel.
Finite convergence can be obtained in the generic cases
if the root finding problem corresponding to Step 4 of
BCDA is replaced one of three procedures: A, B or C.
The choice of the procedure depends on the configura-
tion of 11(6:) and v2(8x). We assume in the following

n1
Ul

discussions that £ # 0.

Procedures A and B are intended to give one step
convergence for 6; in the neighborhood of generic vertex-
facet contacts.

Procedure A(B) Find, if it exists, the smallest
root of F3(6) = 0 on [6;,8,], where

Fi(0) = hx,@)(—RiO)RT (61)&) + hicy o) (Ri(O)R] (81)6x)
(5.1)
with i = 1(i = 2).

Procedure C applies when 6, 1s in the neighborhood
of a generic edge-edge contact. The idea is to capture
the behavior of Ky(8) and K;(8) for 8 € [6;.6*] by ap-
proximating wedges T K,(¢) and TK,(8). See Figure 5.

We now state procedure C.

Procedure C Let I" be set of roots of the following
equations on [6;, 6,]:

det[(212(6)— 211(9)) (222(6)— 221(8)) (213(0)— 2 (8))] = O,
(5.1)
det[(212(6) —212(9)) (222(0)— 221(8)) (214(8) —201(6))] = O,
(5.2)
det[(22(8) —211(8)) (222(8) ~ 221(0)) (223(6)~2a(8))] = O,
: (5.3)
det[(215(6)—211(6)) (222(0) — 221(8)) (224(8) ~222(6))] = O,
(5.4)
det[(215(0) —211(8)) (222(8)—221(8)) (222(8)—211(9))] = 0.
(5.5)

Find, if I" is not empty, the smallest root in I".

Another basic step in the collision detection algorithm
is the determination 1, (6;) and 1,(8;). Since K;(8;) and
K3(6) are polytopes, it is possible to use the distance
algorithm described in [4]. In addition to being effi-
cient, this algorithm provides needed information about
the configuration of the near points. With a simple con-
solidation of its output data, it yields index sets [;(6) and
numbers A;;, 7 € 5;{9), such that

Z /\,jz,'_,(e), Z A,‘,‘ = 1, /\,')' > OfOI'j € I,(G)
JeL(8) jeL(8)
(5.6)

The number of elements in I;(8), N;(8), has a direct cor-
respondence to the configuration of v;(9): if y; is a vertex,
N; = 1; if v; i1s contained in edge, N; = 2; if v; is con-
tained in a facet, V; = 3. This determination is needed if
Procedures A, B and C are to be selected appropriately.

Table I lists all of the 9 possible configurations for a
near point pair: 11(8,),v2(6:). For 6, sufficiently close
to 8%, only three configurations are generically possible:
(c), (e) and (g). If 6, is not near 8*, all 9 configurations
may occur. The Table shows how the procedures are
selected to satisfy two essential requirements: the results
of Theorem 4.1 must be maintained (so 6§ — 6* or (2.5)
can be detected) and that 8,,, = 8* when 6; is close to
o*

%(0) =

With the preceding facts in mind, we now state the
poiytope algorithm

Pslytope Collision Detection Algorithm(PCDA)
Step 1 Set k=0, 0y = 0, Ny(6_,) = N,(6_1) = 0 and

Table I Selection of Procedure A, B or C

Configuration
MN(6) Na(6r)
1 1

m=3
flag=1
A

flag=0 flag=2

(a)
(b)
(c)
(d)
(e)
(f)
(8)
(h)
(1)

flag = C.
Step 2 Compute di, 1(6), 1a(0s), €&, Ii(6r), La(6s),
Nl((h) and N2(9g) .
Step 3 I di < ¢, stop and set § = 6;.
Step 4 If Nl(eg) = N2(6,) =1, [1{6) = 11(0.-1),
I(8:) = I(6i_1) and flag = 0, increment flag by 1. If
Ni(0e) = Na(6r) = 2, Ii(6h) = Li(6i-1), Lo(Or) = I3(62-1)
and flag = 0 or 1, increment flag by 1. Otherwise, set
flag = 0.
Step 5
procedure.
Step 6 If the procedure in Step 5 does not produce a
root, stop. There is no collision on @.
Step 7 Let ;. be the root provided by the procedure
of Step 5. Increment k by 1 and go to Step 2.

The proof of the following theorem is given in [6].

Theorem 5.1 For i = 1,2 assume K;(0) is the
polytope defined by (3.2) and (3.3) and the elements of
R;(6) and p;(9) are Lipschitz continuous. If a collision
occurs on @ assume it is regular, i.e.,

wleo| el no| v o] =] -
o] | eofra|] eafre
=3RS 8- dReciloc BT Hoe] Roolles]

Enter Table I and implement the indicated

K1(6*)Nn K;3(9*) is a single point and there is a unique
(5.7)
hyperplane which separates K;(6*) and K,(6*) .
Then, for € = 0, the PCDA solves CDP in a finite number
of steps. Specifically, it stops either in Step 6 or in Step 3
with 6* = 6.

VI The Root Finding Procedure

We now indicate how the root finding problems con-
tained in Procedures A, B and C can be solved.

Because of the complexity of the support functions for
K1(8) and K3(0) it is better not to implement Procedures
A and B by a direct solution of Fy(8) = 0. From (3.2),
(3.3) and (3.7) it follows that

hi.(o)(n) = max{(n, Ri(Q)wy; : 5 = 1,..., M;}+(n, p:(9)) .

(6.1)
Using this result in Procedure A gives

Fi(8) = ho, (~R{ (8)6) + he, (RS (0)R1 ()R (64)1)

+(R1(O)RT (01)€r, p2(8) — ;1(0)) =0 . (6.2)

Since he,(n) = (n,wy;) for some j € {1,...,M,}, the
least root of (6.2) on [6,,6.], if it exists, satisfies

1017

G4(6) = he,(—RT (0)6x) + (R} (9)R1(O)RT (61)64, w3y)

HER(OWRT (B1)6r, p2(8) —~p1(0)) =0 (6.3)

for some j. Let 8% be the smallest root of (6.3) on [6;,6,]
for j = 1,...,M;. Then we can show that 8% is the least
root of {6.2) on [6;, 6,]. Similarly, if (6.3) has no root on
[6x, 0] for 5 € {1,..., M;} then neither does (6.2).

All of this shows that Procedure A can be imple-
mented by solving the M, simple root finding problems
(8.3). Similarly, Procedure B is equivalent to the solution
of M, simple root finding problems. Also, Procedure C
always requires the solution of exactly five simple root
finding problems.

The numerical solution of the root finding problems
which arise in the above context will be described. It
is crucial that the smallest root of each equation be ob-
tained. Many of the standard root finding algorithms do
not guarantee this result.

First we put (6.3) into a simpler, more abstract form.
Let = [w;, w,] be a compact interval in R. Also, let F
denote the set of functions f; : @ — R such that

F={fi-iel} (6.4)
where I = {1,.--,M}. Then, our root finding problem
can be stated generally as follows:

Root Finding Problem

Assume that f; is C' and fi(wy) > 0, i € I. Let Tp be
the set of roots of fi(w) =0 on Q for alls € I. Find, if
'z is not emply, the smallest root w* in ['g, or indicate
T'g is empty.

In our algorithm for solving the root finding problem,
we approximate the f, € F' by polynomials on subinter-
vals of and find the smallest root of each polynomial
equation. The assumption that the f’s are C' is neces-
sary to assure the validity of the polynomial approxima-
tions. Suppose K; and K; are polytopes as represented
in Section 3 and all components of R; and p; are C'.
Then, the Gj; in (6.3) is C'. In our algorithm, ! is 4. In
Appendix, the root finding algorithm is given which uses
adaptively chosen polynomial fits and has proved to be
efficient and highly reliable.

VII Numerical Examples

Several numerical experiments have been carried out
to test the performance of PCDA. The computer system
was an Apollo DN 4000 with object code produced by
the optimizing Fortran compiler. Distance computations
were implemented with the subroutine described in [4].

The test objects are shown in Figure 6. The hexag-
onal cylinders (a) and (c) have axes which are skewed
from being orthogonal to the faces (22° for (a) and 45°
for (c)). Two polytope approximations were produced for
the robot arm shown in (b): one with 44 vertices and the
other with 164. The three cases considered are defined in
Table I1. K, was either (a) or a polytope approximation
of (b). The object K, was the polytope (c). In each case,

Table II Numerical Results

N = number of examples, k = average k at termination,
t = average CPU time in seconds

Collision No Collision
K\,Ky | My, My | N &k 3 i N &k t i
PCDA || (a), (d) | 12, 12 || 656 44 0.15 12.6] 164 40 016 147
(), (d) | 44,12 568 48 030 128|189 33 030 149
(b). td) | 164, 12 || 567 48 084 128|189 3.3 093 148

N distinct examples were generated by randomly posi-
tioning the polytope (c) initially. K, rotates uniformly
on [0, 2x] about the z axis, K, undergoes a uniform ro-
tation about its body 2 axis on [0, 7]. The value of ¢ was
always less than 1076,

The results are quite promising. Although the com-
plexity, M, + M,, of the three cases varies greatly, the
iteration number for termination doesn’t. The average
ranges from about 4.8 in the collision cases to 3.3 in the
no collision cases. In a few examples the iteration number
reached between 8 and 12. The average CPU times are
approximately proportional to (My +M;)}k. This is to be
expected, since the CPU time for the distance algorithm
is approximately proportional to My + M; (see [7]) and
the number of root finding problems needed for Proce-
dures A and B is M; and M,. Approximately 35% of the
CPU time was spent in the distance algorithm (Step 2)
and 55% on Procedures A,B and C..

VIII Conclusion

An iterative algorithm for detecting the collision of
two convex polytopes, whose motion is determined by a
specified path in configuration space, has been described.
It stops in a finite number of iterations and either pro-
duces the first collision point or shows that no collision
occurs. There is no useful bound on the number of itera-
tions required, but extensive numerical experiments show
that an average of 5 to 6 iterations may be expected.
Remarkably, this result seems to be independent of the
number of vertices in the polytopes. On each iteraticn
the near points in the two polytopes must be computed
(time proportional to M + M) and M, or M; root find-
ing problems solved. Thus, the computation time grows
only linearly in the total number of vertices of the two
polytopes.

A heuristic algorithm has been described which finds
the smallest root of multiple functions. The algorithm
treats all the functions simultaneously which helps to re-
duce the required number of evaluations of the functions.
It also has special features which make it efficient and ac-
curate. The algorithm was used to solve the root finding
problems contained in the collision detection algorithms.
In this role, it solved successfully all the root finding
problems in our numerical experiments.

Appendix: The Root Finding Algorithm

1018

Consider n + 1 points on £ which are equally spaced
by h, that is, w1, wy = w1 + A, w3 = w2+ h, etc. Let pa;
denote the n-th order polynomial interpolating f; at the
n + 1 points. For [w), wa41] C & we wish to bound

max _|flw) — pas(w)] - (41)

€ni =
we[wy wat1]

I the fi, i € I, are C**!, it {ollows from the compactness
of @ and the continuity of @**!f;/dz"*! that there exists
a L > 0 such that |d*+! f(w)/dz"t!| < L for all i € I and
w € §1. A standard result on polynomial approximations
i9] then shows that

L o ,
P — W I A2
€ni < (ﬂ ¥ 1). NE[E:%'):H]IE(W wl)l , $€1r, ()

that is, e,; = O(h"*!). Thus, in principle, e, can be
made small by the choice of 4. Note

f-(W)ZPn.'(W)—eui y el w e[“’l,wu+l] . (A.3)
If we can show
Priw)>eni, 1€I, w€lwwap], (4.4)

we know that there is no root of the family F on
{w1,wa+1]- We use this idea in our algorithm. In addition,
we try to estimate the roots of fi(w) = 0 by obtaining
the roots of p, ;(w) = e, .

A key issue is choosing h sufficiently small so that
the above ideas give acceptable results. Unfortunately,
there is no satisfactory procedure for determining L in
our root finding problem. Therefore, we estimate e, ; by
a heuristic approach using the polynomial interpolations
Pni and Ppyy;. Obviously,

max |fi(w) — patri(w)]

wefwr wn1]

max }fi(w) — pai(w)] £

welwr,wnp1]
max
wE[wr,0n41
From (A.1) and (A.2) the first and second terms in the
right hand side of (A.5) are functions of O(h**?) and
O(h*+1), respectively. Thus, if h is small enough, it holds
that

lnt1i@) = pas(@)l (4.5)

en:s & max |fiw) = Ppayri{w)]
wE[wr ,way1]
max |Pas1i(w) — pai(w)]
wefwr ,wny1]
& max |pep1{w) = Pnow)] = €mas . - (A.6)
wéelwy ,wn 1}

If h is small enough, €mq. i 18 an approximate upper
bound of |fi{w) — pn i(w)] on [wy,wny1]. Moreover, (A.3)
and (A.6) imply that to a good approximation the fol-
lowing inequality holds

f-(W)?.Pn-(w)—enm. - (A7)
Thus, we can solve py (@) — €mar i = 0 instead of fi(w) =
0 to verify fi(w) > 0 for [w;,way1]} or to obtain an ap-
proximate smallest root of fi(w) = 0 on w1, Wa41]. Since
Pr i(w) = €mas i = 0 is a polynomial equation, it is easy to
solve.

In our root finding algorithm, we use x; £ emaz if filw1)
as the parameter to control h. The parameter y; rep-
resents the approximation accuracy of p.; relative to
fi{w1). In the algorithm, we preset two threshold val-
ues, x1 and x2 (x1 > x2), for x;. ¥ x: > x1 for any 1,
the algorithm determines that the approximation is not
accurate enough and reduces h to h/3 to obtain a more
accurate approximation; if x; < x2 for all ¢, the algo-
rithm decides that it can increase h to 3h while keeping
reasonable accuracy; otherwise, the algorithm keeps h
without change. Generally speaking, the above choice of
xi requires smaller h as f; is closer to 0 on [wy, way1].

If x; < x1 for all i € I, we compute, if it exists, the
smallest root of

pni(“l)_a' Cmazi = 0 (AS)

on [wy, wpy1] for each §, where a can be chosen between
1 and 1/x;. We put a(a > 1) in (A.8) is to make it more
likely that (A.3) holds. Let &; and w}, & € I respectively
denote, if they exist, the smallest root of (A.8) and the
smallest root of fi(w) = 0 on [wy,wgy1]. Obviously, if
O Cmagi 2 €ny, wi Sw! foreachie .

In our algorithm, we choose n = 2 and a = 2. In de-
tail, we interpolate f; on [w, w;] by the quadratic poly-
nomal, denoted by pi,, such that p},(w;) = filw;), J =
1,2,3. Also we interpolate f; on [w,, w] by the quadratic
polynomal,p?,, such that p?,(w;) = fi(w;), j = 2,3,4.
ps; is the cubic interpolating polynomial such that
psdwy) = filw;), 3 =1,2,3,4 It is easy to show

emosi = MAX 193, ()=pai(w)| = max Ipji(w)=psi(w)l
=0.06415. .. |fi{wi) — 3 fi(w2) + 3 fi(ws) — filws)| -

(4.9)
Thus, the solution of (A.8) can be obtained analytically
in terms of fi{wi), fi(wz) , fi(ws) and fi(wy).

Now, we state fully the root finding algorithm. Its ob-
jective, if w* exists, is to obtain an approximation of w*,
& < w*. The algorithm has input parameters, 8, u, x1
and x2: 8 is the ratio of the initial value of h to w, ~wy,
4 > 0 is the desired bound on w* — @, x1 and x2 have
already been described. The terminology trisect [wa, wp]
means set h = (wg — Wa)/3 and wy = wq, w3 = w1 + h,
w3 =wy+ h, wy = w3 + b =wg. & denotes the smallest
root of pl,(w) — & - emas i = 0 0N [wy, wy] or the smallest
root of p2 (W) — & - emasi = 0 on {wy, wi]

1019

Root Finding Algorithm

Step 1 Set h=f(w,—wy) and w1 = wy, wy = wy + A,
W3=WQ+h, wy = w3 + h.

Step 2 I w, > w,, stop and report I'g is empty.

Step 3 Compute fi(w1), § € I. H mine fi(wy) < 0,
stop and report error. If mines fi(wy) = 0, stop with
& = w.

Step 4 Compute fi(w;), i € I. H min;e; fi(wy) < 0 and
wz — wy < y, stop with @ = wy. If min;e; fi(we) € 0 and
wq — w1 > W, trisect [wy, w,] and repeat Step 4.

Step 8 Compute fi(w3), + € I. i minjes fi(ws) < 0 and
w3 — wy < i, stop with & = wy.

Step 6 Compute fi(w,), 1 € I. i min¢; fi(wy) < 0and
wy —wh < 4, stop with @ = wyq.

Step 7 Compute epmari, X5, t € I and set ypor =
maxX,c; Xi- I Xmar > X1, trisect [wy, w;] and go to Step 4.
If xmar < x1, compute @, ¢ € I on [uy,ws], if it exists,
and obtain @ = min;w;. U @ does not exist, go to
Step 8; if @ < wy, trisect [@, w;] and go to Step 3; if
wy € @ < ws, trisect {w, ws] and go to Step 3.

Step 8 Compute @, 3 € I on [wy,wy], if it exists, and
obtain @ = min;¢; ;. H @ does not exist, go to Step 9; if
@ < ws, trisect [, w3} and go to Step 3; if w3 < @ < wy,
trisect [@,w,] and go to Step 3.
Step 9 If xmar < X2, set A
unchanged. Set wi = wy, wa

wy = w3 + h and go to Step 2.

3h; otherwise, leave h
w1+ h, w; wy + h,

References

[1] R. O. Barr and E. G. Gilbert, “Some efficient algo-
rithms for a class of abstract optimization problems
arising in optimal control,” IEEE Trans. Automa.
Contr., vol. AC-14, pp. 640652, 1969.

{2] D. P. Dobkin and D. G. Kirkpatrick, “A linear algo-
rithm for determining the separation of convex poly-
hedra,” Jouraal Algorithms, vol. 6, pp. 381-392, 1985,

[3] E. G. Gilbert and D. W. Johnson, “Distance func-
tions and their application to robot path planning in
the presence of obstacles,” IEEE J. Robotics Automat.,
vol. RA-1, pp. 21-30, 1985.

[4] E. G. Gilbert, D. W. Johnson, and 8. S. Keerthi,
“A fast procedure for computing the distance between
complex objects in three-dimensional space,” IEEE
J. Robotics Astomat., vol. RA-4, pp. 193-203, 1983.

[5] E. G. Gilbert and S. M. Hong, “A new algorithm
for detecting the collision of moving objects,” in Proc.
IEEE Conf. on Robotics and Astomat., Scottsdale,
AZ, pp. 3-14, May 19389.

[6] S. M. Hong, “New algorithms for detecting the col-
lision of moving objects,” Ph.D. Dissertation, Dept.
Aerospace Engineering, Univ. of Michigan, 1989.

[7] S. Kawabe, A. Okano, and K. Shimada, “Collision
detection among moving objects in simulation,” in

Proc. 4th Int. Symp. on Robotics Research, pp. 489-
496, MIT Press, 1988.

[8] T. Lozano-Pérez, “A simple motion-planning al-
gorithm for general robot manipulators,” IEEE
J. Robotics Automut., vol. RA-3, pp. 224-238, 1987.

[9] M. J. D. Powell, Approzimation Theory and Methods.
Cambridge, London: Cambridge Univ. Press, 1981.

Figure 1. The support mapping and the supporting
half space.

Lk, k0, (m)

us(n)

K,

Figure 2. The separating slab with normal vector 1.

LKl,Kz(E)

K,

Ik, x5, (&) = d(K1, K2)

Figure 3. The separating slab generated by the near
points 1, and -

Ka(6:) T

K3(0er1)

[~ width of L(6x41;&) = 0

Figure 4. Geometric interpretation of step in Basic Al-
gorithm for solving the CDP.

P

v3(0k) € Ex,(6%)

E[(l(ek) Z11 (9k)

224(9k)

214(6;)
Figure 5. TK,(6;) and end view of TK,(8,) along the
line connecting z31(6;), 22(6:)-

Yy
5.0 20>
Py
2.0 1.0
‘ Y
z
y (a) ®

z
; x
Yy

e

Figure 6. Polytopes used in example computations.

