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ABSTRACT

To recognize isomorphic transformation patterns, such as
scale-change, translation and rotation transformed patierns, is an
old difficult but interesting problem. Many resaerches have been
done with a dominan! approach of normalization by many eminent
pioneers. However, there seems no a perfect system which can
even recognize 90° -multiple rotation isomorphic transformation
patterns for real needs. Here, as a new challenge, we propose a
method of how to recognize 90° -multiple rotation isomorphic end
symmelry isomorphic transformation patterns.

1. INTRODUCTION

Usually, a pattern recognition system is composed of two
parts, feature extraction part(FEP) and recognition part(RP)[1].
Because a pattern may have many manifestations due to its
geometrical isomorphic transformations and stochastic variations,
a feature extraction mechanism is often demanded to have some
performances of normalization. The geometric aspect can be real-
ized by designing pattern-to-feature mapping process which can
absorb the transformation. And on the other hand, the stochastic
aspect can be accomplished through performing KL-
transformation or PCA(Principal Component Analysis). When
all these are achieved, pattern recognition can be simplified to a
minimum distance matching with learned standard patterns in
some kind of feature space{2)~{11}.

In the newly developed intelligent system, we utilize Nth-order
Autocorrelation functions of patterns(AFP) to constitute the
FEP, where the domain of AFP is confined to a 7x7 lattice and
its order is selected to be N = 2. By virtue of the characteristics
of autocorrelation, it is found that the AFP can be obtained with
a set of mask patterns by matching them with object patterns
respectively and counting up the number of their matchings
instead of using conventional methods. By taking this way, the
FEP is realized with a special circuit using parallel processing
algorithm. Since the 2nd-order autocorrelation function of a pat-
tern within a 3x3 lattice domain can only has 25 independent
values and 5x5 as well as 7x7 is only the expansion of 3x3, pat-
terns are mapped into a 75-D feature space in real time in the
system. More than that, based on the property of autocorrela-
tion, it is clear that every translation isomorphic transformation
pattern set is normalized into one pattern. So the system is
invariant to translation transformation of patterns. However, as
our objective is to realize 90°-multiple rotation isomorphic and
symmetry isomorphic patterns, we take use of the isomorphic
relation between object pattern’s rotation-symmetry and mask
pattern’s rotation-symmetry to perform another mapping. this is
realized simply by summing up the feature values correspoding to
the mask patterns which form a 90°-multiple rotation-symmetry
isomorphic set. As the last result of the geometric normalization,
patterns are mapped into a 22-D feature space.

To perform normalization to stochastic variation of patterns,
we perform PCA on the 22-D feature space. By supervised learn-
ing, standard patterns of every pattern class is learned concentra-
tively. Then, PCA is performed on the covariance matrices of
total data (£,) and every class adat ({;), so that linear
transform matrices (4;,4;) corresponding to them are calculated
using their eigenvectors and eigenvalues in order to map patterns
into Mahalanobis spaces(S,,5;) and get their centroids (CE,,CE;).
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After that, covariance matrices of every calss are summed up to
get within-class convariance (Q,). By simultaneous diagnolizing
the Q, and Q, = Q, — 2, linear transform matrix (4,,) is
acquired, by which patterns are mapped into a space(S;,,) with a
meaning of largest between-class-covariance and whitened
within-class-covariance. In §,,, centeroid of each learned pattern
class(CEy,,;) is calculated as the standard pattern. Becase PCA
is also a dimension compression method, the dimensions of
541545, are deminished to lower than 22. These complete the
stochastic normalization process and the parameters thus
obtained become the knowledge-base.

In pattern recognition phase, unkown pattern’s 22-D feature
vector is firstly mapped into §;, where its distance to CE, is cal-
culated to determine if it is in the range of learned patterns with
a criterion of x* distribution of some degrees of freedom. If not
in, it will be rejected. If in, it is then mapped into Sdubi to verify
if it belongs to any class. Here if it doesn’t belong at least one
class, it will also be rejected. After these two checks, if pattern is
receipted, it then is mapped into Sy, to determine which class it
belongs by minimum distance(to CE,;;) matching method. In the
last decision making, if the minimum distance is large than a x?
ditribution criterion, the pattern will also be rejected.

The above matters are verified with experiment, where 3
classes of chinese characters are used as main object patterns.
The result shows that this system is usful for application such as
visual inspections.

2. PRINCIPLE OF FEATURE EXTRACTION
Usually, a real value pattern can be expressed with a two-
variable real function f(z,y), where (z,y) is a point in Cartesian
coordinates. From this, the Nth order autocorrelation function
of any pattern can be defined as follows.
Y71, Tyt i Tam Tyn)
=fff(i,y)f(z'*'”"my"“"yl)---f(3+7'zm1/+7‘y~)di’dy

where (7,;,7:);i=1,2,...,N is the ith translation vector.
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It is obvious that function ¥ is tramslation invariant in the
sense that f(z,y) and f(z,y)=f(z+7ay+7,) have the same Nth-
order autocorrelation function. This kind of functions of patterns
was first proposed for pattern recognition by Horwitz and Shel-
ton using optical system{12]. And its detail properties were
thoroughly discussed by McLaughlin and Raviv[13]. Tt is indi-
cated that other than the first order autocorrelation function, for
almost all the patterns, the second order (and higher even order)
autocorrelation functions are unique. that is, an autocorrelation
function is equal to another if and only if their corresponding
patterns have a tanslation relation. Such that, the second order
(and higher even order) autocorrelation function can be used as a
method of feature extraction for its characteristics of uniqueness.

However, as feature extraction in some meanings is also a pro-
cess of information compression from higher dimension to lower
dimension, the domain of autocorrelation function must be con-
fined to a small range. Otsu and others suggested to use local
domain near origin such as a 3x3 lattice[14]. In the case of a
mxm lattice domain, a Nth order autocorrelation function can
have (mxm)” values. So, even for the 3x3 domain, the dimen-
sion of feature space is too high to operate. From this point of



view, we selected the order to be N=2, so that the feature space
may have a dimension of 81 for 3x3 lattice domain. But, because
of order degeneration and traunslation isomerism, the dimension
can be degenerated to 25. Table 1 shows the coordinates of the
confined domain and their isomeric ones in the case of taking the
coordinates as Fig.1. In order to make the feature space have a
higher recognizability, we simply extend the 25 coordinates men-
tioned above to a 5x5 and a 7x7 lattice frame-and-center
domain. Fig.2 shows the total domain illustrated with a 7x7 lat-
tice. Such that we can totally get 75 kinds of independent trans-
lation coordinates, that is to say, the dimension of feature space
will be 75. This can be considered as neither too high nor too low
a feature space for microcomputer to process.

Table 1 The relation between mask patterns and
translation vectors of autocorrelation
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Fig.1 3x3 lattice domain Fig.2 7x7 lattice domain

As a common knowledge, to calculate Nth order autocorrela-
tion function is a very time exhausting thing. So, a high spead
method based on hardware parallelism is desired. Because the
calculation of autocorrelation function of any pattern f(z,y) with
respect to a set of N translation vectors is simply a process of
shifting the pattern corresponding to those translation vectors to
make out a product pattern of N+1 overlap patterns and then
integrating it over the whole domain, the process can be replaced
with a mask pattern scanning, where the N translation vectors
are distributed on a small lattice. The scanning is taken pixel by
pixel over the whole scene, and at each pixel the product of pat-
tern value corresponding to a translation vector on the mask pat-
tern is calculated. The sum of those product becomes the auto-
correlation function value vs. the very set of translation vectors.
Especially in the case of binary pattern, this process is only a
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process of calculating mask pattern histogram if mask pattern is
designed to be a black and wight one where black pixels present
translation vectors and white pixels means "don’t care". Since
binarization is included in the preprocessing, pattern’s autocorre-
lation is actually its bianry pattern’s. It is clear that mask pat-
tern histogram is easy to be realized with hardware parallelism.
In deed, this kind of device is developed to extract pattern’s
autocorrelation feature in real time. Fig.3 shows the mask pat-
terns used to extract feture vectors of 75-D. And, we describe the
75-D feature vector as follows.

E = (i - - - s6us) (2)

Here what we must pay attention is that, £, £ and &, are
the same value.
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Fig.3 Mask patterns used for feature extraction

3. ABOUT ISOMORPHIC TRANSFORMATION PATTERN

3.1. WHAT IS ISOMORPHIC TRANSFORMATION

Let f(z,y) presents a 2-D real pattern, the transformation
between any two patterns expressed by the following formula is
called pattern’s Isomorphic Transformation(IT).

T(aA B) O flea) = af(4[Z] +0) 3

where, Ti(a,A,8) means ith kind of transformation. And o means
Juminance factor, A means linear transformation matrix, § means
translation transformation matrix, respectively.

It is clear that every interesting geormetric characteristic of
patterns gives a kind of isomorphic transformation. For example,
pattern’s translation forms translation isomorphic transformation
and pattrn’s rotaion forms rotation isomorphic transfomation. If
we define the patterns which are generated from a standard pat-
tern according to some kind of isomorphic transformation as a



pattern calss named isomorphic transformation patterns(ITP),
we can line out an interesting pattern recognition problem which
has paramount significance of application. As a matter of fact,
every kind of ITP is caused by an operation of transformation
group if we deal the problem with group theory.

3.2. HOW TO RECOGNIZE ITP

As we said above that thinking every ITP as a pattern class is
an interesting apllication problem for visual inpection, here we
describe how to recognize it.

To recognize ITP, a simple method is to extract invariant
features of ITP, so that every pattern belonging to the same class
can have the same feature vector and different classes have dif-
ferent feature vectors. By this way, we can easily constitute a
pattern recognition system for classifying ITP. However, it’s diffi-
cult to extract features invariant to some kind of pattern
transformation from pattern directly. Actually, our mask pattern
histogram method is only invariant to pattern translation expli-
citly. So, to find out some kind of implicit invariance of features
to some kind of pattern transformation looms important.

Because a class of some kind of ITP can be considered as gen-
erated from a standard pattern by some kind of transformation
group G = {g; [i=0,1,...,n}, where n is finite or infinite, if the G
can be quasiisomorphicly mapped in to another kind of transfor-
mation group G which operates on feature vector sets, an algo-
rithm of feature vector transformation or amalgamation can be
worked out for constructing a kind of ITP recognition system.
The quasiisomorphic mapping from G to G can be illustrated
with Fig.4.
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Iig.4 Quasiisomorphic mapping from G to G

Therefore, if we can find a feature measure space which satis-
fies the if-only-if condition of Fig.4 with respect to some kind of
ITP, we can simply work out a recognition system for this kind
of ITP.
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Fig.6 Relation between

Fig.5 Symmetry of square symmetry & rotation

3.3. 90°-MULTIPLE ROTATION AND SYMMETRY ITP

Fig.5 shows a square with a rotation center "O" and four sym-
metry axes. we note the transformation group which transforms
the square to itself after a rotation or symmetry transformation
as (. Obviously, this group contains eight elements, that is, the
e,0,0°,0(0c*=¢) and the 7,777, Here, the former four
correspond to the rotation of the square with a degree of
0°.,90°,180° and 270° about the center "O", and the latter four
correspond to the symmetries with respect to I,l,l3,l; respec-
tively. If we take the advantage of the relation between sym-
metry and rotation as shown in Fig.6, we can obtain the follow-
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ing results. That is, if 7= 7, then 7 = o,y = o’1y1y = 07,
Such that, we can write G, as follows.
G, = {e,0,0% 0% romo?ra’r}

(4)

In this paper we deal with the problem of how to recognize
ITP generated by the very G, defined above. Indeed, every calss
of this kind of ITP contains eight patterns as illustrated in Fig.7.
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Fig.7 The eight Isomorphic transformation patterns
generated by G4
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3.4. ABOUT THE MASK PATTERNS

Because mask pattern histogram method is used in our system
to extract pattern’s features and it isn’t invariant to the GITP,
the mask patterns have to have some kind of property which
satisfies the condition shown in Fig.4. Since a feature corresponds
to a mask pattern in mask pattern histogram method, mask pat-
tern sets included in Fig.3 must be under an operation of
transformation group G which is quasi-isomorphic with G,. As a
matter of fact, within the 75 mask patterns in Fig.3 there are 22
mask pattern sets which are generated by G,. Therefore, the
features obtained by mask pattern histogram must include 22
feature sets which are generated by a permutation group G of
order 8. So our musk patterns shown in Fig.3 satisfy the condi-
tion shown in Fig.4.

3.5. DEDUCTING INVARIANT FEATURE VECTOR

Table 2 shows the 22 sets of isomorphic transformation mask
patterns under G,. The mask patterns in the first set are actually
the same one. And the sets which contain only two or four mask

Table 2 Isomorphic Transformation Mask Pattern Sets

NO. Mask Pattern Sets
1 My (Mg, Ms))}

2 My M,}

3 M M,

1 My M,

5 MM,

6 Mo My, Mig Mg, My My, Mo, My}
7 Mg Mo, M2, Mya}

8 Mg, My, Mya, Mys}

] My Mg}

0 [ {MuMou)

RO A)

1T [ (i, 0)

13 Mg My Myr Mg Mg My Myy, Mon}
14 MM, M",M“}

15 M«' A8 56» 50}

16 My, My}

17 Myy, Mys}

18 My, My}

19 My, Mo}

20 Mo, Me1, Moz, Moz, Moy Mes Moo M7}
21 Mg, Mg, M3, My, }

22 M597M7l’M731M75)




patterns are degenerated ones caused by some kinds of sym-
metry. It is obvious that if we sum up the features correspond to
each set of isomorphic transformation mask patterns, the
compressed feature vector of 22-D will be invariant to G-ITP. So
that, every pattern class as shown in Fig.6 could be mapped into
a distinct point in the 22-D feature space if stochastic variations
aren’t taken into account. Therefore, through configurating a
stochatical algorithm of pattern recognition, we can build a sys-
tem for recognizing G-ITP simply.

4., STOCHASTIC PATTERN RECOGNITION ALGORITHM

Although in principle, every class of G4ITP could be mapped
into a distinct point in the 22-D feature space through the pro-
cess mentioned above, it is difficult to be realized with hardware
dure to some kinds of stochastic noises during the process of
standardization, digitization and feature extraction. So, it is
inevitable to take the stochastic variation of feature vectors into
account. Furthermore, as a pattern class usually contains not
only a kind of pattern but also some similar patterns of it, we
have to compose and select out the powerful feature in order to
have a robust and fast recognition system.

Usually, in order to enable a pattern recognition system to
recognize object patterns, one must at first teach some samples
of the object patterns to be recognized to the system. And after
the learn process, the system must be able to recognize each
learned pattern and its similar ones based on the learned
knowledge. Furthermore, it could also reject the patterns not
learned.

From the above points of view, we use PCA to compose the
features and at the same time compress the dimension of feature
space. In order to have a powerful rejecting mechanism, multi-
layer of rejection decision making is used. The detail is as follows.

Let’s condider a U-class pattern recognition problem. In the
teaching process, we teach each standard pattern of every class
several ten times to the maching. The teaching contents are 22-D
Feature vectors and class numbers. Such that, A data matrix of
total patterns D, and data matrices of the patterns of each class
D; ;i=1,...,U are acquired. Then each D’s covariance matrix, that
is, 2, and Q; are calculated as R-problem. After that, we con-
duct PCA to 2, ;i=1,1,...,U to get linear transformation matrices
A;;i=t,1,...,U for composing features and compressing feature
space dimension. In fact, the PCA operation is a problem of
eigenvalue and eigenvector of §2;, that is,

M = MG (5)
where A and ( present eigenvalue and eigenvector respectively.
Since A is indeed the variance of transformed data along the axis
of (s, usually the eigenvectors corresponding to the largest
several eigenvalues are used in order to achieve the feature com-
position and dimension compression. In our system, we use only
the largest two eigenvalues’ eigenvectors to constitute the A4;, so
every A; is a 22x2 matrix. However, as this kind of 4; is only a
transformation for diagonalizing covariance matrix, to build
rejection decision making rule it is necessary to have the new
spcae whitened. This can be done by multiplying the A; with the
Af = diag(My,A )% matrix, that is,

T = AxAf (6)
If we transform each data matrix D, through 4, then the dis-
tance between any two point in the new feature space is nothing
but Mahalanobis distance which is invariant to scale change{15].
Furthermore, if we hypothesize that the patterns in the new
feature space are ditributed as normal distribution, it is clear
that the data after centroidization must follow x? distribution
with a freedom of degree two. Since the freedom degree two x*
distribution’s probability density function is as follows,

p(x?) = L2 @

= —¢

we can build an absolute criterion for rejecting abnormal pat-
terns by intergrating p(x?) from 0 to some upper limit value to
which the decision making confidence is nearly 1. It is easy to
calculate that if we select the confidence to be 0.999 the cri-

3(0<x?<o0)
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terion, that is, the upper limit must be 13.815.

From the above items, two layers of rejection mechanism can
be obtained. First, we use 4, and D,’s transformed centroid
CE, = (CE,;,CEp,) to build the first rejection layer. Based on
this, when an unknown object pattern is given to the machine,
after being transformed by 4, to the 2.-D whitened feature space,
its square distance to the learned center CE, is calculated.
Because the distance is nothing but x? value, if it is above
13.815, the pattern will be rejected as unlearned one. Otherwise,
it will be received for next discrimination.

Second, we use A; and D;s transformed centroid
CE; = (CE;;,CEy) to build the second rejection layer. The deci-
sion making is as the first one, but because there are U 2-D whi-
tened feature spaces, only if the unknown pattern is rejected by
all the U spaces it will be recjected. Otherwise, it will be received
as learned pattern or the similar ones.

Obviously, in the above two layers of rejection mechanism,
(A;CEy) 5i=t,1,..,U are the learned knowledge from teached
sample patterns.

Hereafter, we must build the final rejection layer. This layer
must also do recognition and inference. To do this, we first build
the within-class and between-class covariance matrices §2,, and
Q. These can be calculated with Equation (8) and Equation (9).

U n.
Q,=N—8; 8
En‘ (8
Q=0Q,-Q, (9)

where, n; and n, are the sample numbers of each class and total,
respectively.

Then, we perform simultaneous diagonalization on £, and Q,,
that is

Qpdp = QudpA, ALQ Ay, =1

This is an eigen equation problem. Where, A is the diagonal
matrix of eigenvalues and I denotes the unit matrix. At fact, this
is a process of getting an optimized new feature space in which
each class’s variance is whitened and the between class variance
gets maximum. Here, we also use two eigenvectors corresponding
to the largest eigenvalues to compose a dimension compression
matrix Ay,

Because after transformation by Ay, the within class distribu-
tion of data is whitened, x* distribution hypothesis can also be
used to reject unknown patterns. As A,, is a 22x2 matrix, the
criterion of rejection is also 13.815 for a 0.999 confidence.

However, this layer must also recognize and inference the class
number if an unknown pattern is recieved, so inference rule must
also be build up. Here we use the method of calculating the
minimum distance to a class center. if the minimum
distance(square) to a center of some calss, is below 13.815, then
the pattern accepted by the previous two rejection layers will be
infered as belonging to that class. otherwise, it will be at last
rejected as unlearned. It is clear that this is a mix layer of both
rejection and class inference.

(10)

5. EXPERIMENTS

In order to confirm the performances of the isomorphic
transformation pattern recognition system mentioned above, we
used 3 sets of patterns in doing experiments as shown in Fig.8.
The first set contains three classes of patterns, where each class
contains 6 kinds of patterns. This set is used for teaching the
machine. Here, chinese charactors are used for that it is easy to
get. The second set consists of the first set’s similar patterns used
for checking the recognizability of the system. And the third set
is composed of abnormal patterns used for testing the rejection
mechanism of each layer in the system.

Fig.9 shows the learned space of the first and the second rejec-
tion layer. And Fig.10 illustrates the third layer’s learned space.
In the former, the center of each circle is the CE; and the inside
circle shows the criterion of 13.815. In the latter, the cluster of
each class is shown.

The experiment results show that for the learned patterns in
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set 1 all can be recognized perfectly by the system. To set 2, the
system have a correct recognition rate of 0.67, where 33 percent
of the patterns was rejected rather than wrongly infered. And the
third set is all rejected, some by the first layer, some by the
second layer and others by the third layer. What is interesting is
that some patterns which are rejected by the previous two layers
may be accepted by the third layer if there were no previous
rejections. This shows that the previous two layers of rejection
are meaningful.

6. CONCLUSION

In this paper, we described how to recognize isomorphic
transformation patterns based on mask pattern histogram
method of feature extraction. Being confined by the mask pat-
tern realization with hardware, our system can only recognize
90° -multiple rotation isomorphic transformation and symmetry
isomorphic transformation patterns. However, our approach can
be considered as having some generalities. Indeed, any kind of
isomorphic transformation patterns, to which we can have a
measuration space to extract pattern features satisfying the con-
dition as shown in Fig.3, can be recognized by the similar system.
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Although our system now can only recognize eight isomorphic
transformation patterns of a standard pattern, however it is
powerful if used for identifying machine parts. This is because
that, almost all the parts have the same shape for top and bot-
tom and they often subject to turn over and rotation change, so
if we can adjust their four usual directions we can recognize them
by this method. And, it is obvious that to adjust a part to any
one of the four directions is not a hard thing to realize. This tells
that our system is applicable for real use.

In the three layers of rejection and class inference, every kind
of new feature space is confined to 2 dimensions. This is only for
fast caculation and visual display. In theory, the dimension of
the new space must be determined by accumulation contribution
rate of eigenvalues sorted from large to small. Of course, criterion
of x? must change with the new feature space’s dimension.

In the experiments, the low recognition rate of the second set,
that is, the similar patterns of the learned patterns of the first
set is possibly because the teached patterns, that is , the ones in
the first set are not good representatives of the three classes. So,
it may be improved by teaching a great amount of samples of
patterns of each class.

Lastly, because the x> distribution criterion is an a priori
knowledge, this stochastic pattern recognition method can be
considered as having some generalities.
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