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A New Pattern Classification Algorithm for Two-dimensional Objects
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ABSTRACT

Pattern classification is an essential step in automatic

robotic assembly which joins together finite number of
seperated industrial parts.

In this paper, a fast and systematic algorithm for classi-
fying occlusion-frec objects is proposed, using the notion of
which describes the boundary

contour of an object as a parametric vector function of incre-

incremental  circle transform

mental elements.  With similarity transform and line integral,
normalized determinant curve of an object classifies each object,
independent of position, orientation, scaling of an object and

cyclic shift of the starting point for the boundary description.

1. INTRODUCTION

In robotic assembly which joins together finite number of
industrial parts, the machine vision is used effectively for clas-
sifying the industrial parts and determining the position and
orientation of each industrial part being out of order. In case
of parts classification, each industrial part is often required to
be classified regardless of its variations in position, orientation
and scaling. In addition, the pattern recognition must be per-
formed in a reliable and fast manner for the visual processing
capability often determines the efficiency of automated robotic
assembly.

So far, there have been proposed a number of metho-
dologies [1-6] to improve the efficiency such as processing
time or recognition rate. Specifically, Hull] utilized moments
invariants of an object, and Perkins[2] represented boundary
contours of industrial parts as a set of straight lines and circu-
lar arcs, and classified the parts by cross-correlating curvatures
of the concurves with those of the models. In [3], normalized
Fourier descriptors of a cumulative angular function,
representing the boundary contour of an object, are adopted to
classify the object. The cumulative angular function denotes
the net amount of angular bend between tangential lines at the
starting point and at each point of the boundary contour.
Ballard[4] proposed a generalized Hough transform which
transforms boundary points of an object into points in Hough

transform space by using directional information from each

917

The most
clustered point in the Hough transform space corresponds to

boundary point to a referecne point of the object.

the shape of the object.

Ayache and Faugeras(5] described the boundary contour
of an object as an approximate polygonal and then generate a
number of hypotheses to locate the object by comparing local
They
classified the object by recursively testing the hypotheses and
In [6], Dubois
and Glanz represented the boundary contour of an object by

intrinsic features of the object with those of the model.
iteratively evaluating other boundary segments.
an autoregressive model. The model is a parametric equation
that expresses each sample point of the boundary contour as a
linear combination of a specified number of previous boundary
sample points and an error term. Then, the object classifica-

tion problem is turned into a problem to estimate and analyze

the coefficients of the linear combination.

However, most of the proposed methodologies suffer
from expensive computation in boundary description of an
object and/or subsequent analyses for pattern classification. In
this paper, a fast and systematic algorithm for classifying two
dimensional occlusion-free objects is proposed, the
As Introduced in [7],

the incremental circle transform describes the boundary con-

using

notion of incremenital circle transform.

tour of an object as a parametric vector function of incrcmen-
tal elements. By using determinant curve along with similarity
transform and line integrat it is shown that the transform clas-
sifies an object independent of position, orientation, scaling of
the object and cyclic shift of the starting point for the boun-

dary description effectively.

Section II includes the proposed theory for pattern clas-
sification, and experimental results for the theory are shown in
Section III. Finally, Section IV contains conclusions.

2. A PATTERN CLASSIFICATION THEORY

Let us consider a simple closed curve C that is counter-
clockwise oriented. The curve may represent the boundary con-
tour of an occlusion-free object in the image plane. Let the

curve, C, be expressed by a parametric vector function,

a) = (x0) .,y .

0<: <L



where t is the arc length from a point a(0) to the boundary
point a(r) and L denotes the total arc length of C.

REVIEW OF INCREMENTAL CIRCLE TRANSFORM

In [7], the notion incremental circle transform is intro-
duced as follows.

Definition) Incremental Circle Transform

Let there be given a simple closed curve, af(t),
0 <t <L and, a feasible radius r. For each t e [0, L},
let A a(zr) denote the vector

aa@) = (Ax(D), 430 )
where

AN + 85%) = 2 (1)

and

a(t + A1) = a() + 8,a() @)

for some Ar, 0 < &r < L. The Aja(r), 0 <7 <L is

called as a(l),
0=<:=<L.

incremental  circle wansform  of

The feasible radius r is chosen in such a way that the
number of intersecting points between a(r), 0 <+ < L and
the circle represented by (1) is greater than zero. In case that
there exist several Ar’s satisfying (1) and (2), the minimum Ar
is selected for the uniqueness of Ar in (2). In consequence,
the incremental circle transform maps points on C onto a cir-

cle with radius r.

The

charucteristics of translation invariance and rotation matrix

incremental circle transform has the following

preservation.

Property ICT-1) Position Invariance[7]

The incremental circle transform is invariant under
the translation of an object if the starting points of boun-
dary contours for translated objects coincide with that of
the original object.

Property ICT-2) Rotation Matrix Preservation(7]

The rotation matrix between two contours in the x-y
plane is the same as the rotation matrix between the
corresponding incremental circle transforms of the con-
tours regardless of positions of the contours in the x-y
plane.

To be specific, let four contours in Fig. 1 be expressed

by
C : a(), 0=t =L,
Ch, ! (), 0=t <L,
Cy ag(t), 01 =L,
Cpp i age(n), 0=t =1L
Then  the relationship between € and each contour is
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Fig. 1. Simple Closed Curves

represented in terms of the homogeneous transform as follows

1 0 x
[uA(r) l 4 a(n)
1 =101 )"CA : 1
00 1
1 0 x
ag () I ? (1)
S IR I Y
00 1
cos § — sin 8 x.
"] A1
= | sin® 8 v, :
1 sin cos ycA 1
0 0 1

where
(xc ¥ ¥ center of C,
A A
T
X, Y,
( <, )CB )
[} rotation angle in CCW-direction with respect to the
z-axis at
T
X
{ c, > }’CA )

center of C,

Referring to Fig. 1,

Aa(®) = Ao, () =Aay(), 0 st <L

is resulted from Property ICT-1). Also, since azy(t) =
cosf — sin®
R - a,(r) where R = . ,  Property
sin 6 cos 6
ICT-2) implies
Aogr(t) = R - Aa,()
=R - Aa() 3)



A PATTERN CLASSIFICATION THEORY

In this scction a notion called determinant curve will be
defincd as an image feature being invariant to translation,
rotation, scaling of the object, and shift of starting point for

object boundary coding. The determinant curve is derived

from similarity transforms of incremental circle transform.
Let us consider equation (3) again, ie.,

A apr(f) = R - Aaf(r)
And, foranyr, 0 <+ <L,
A (t—7) = R - A a(t—7)
Then,
T - T -1
A oapr (1) - Bagr(t—1) = R - Aa(r) - Aa’ (-—=7) - R
Let
M.(1) = Aa() - Aa (1-7) ,
T,(6) = A agp(t) - Aapp(t—7)
Then,
T() = R M) R 4
Since T, (¢) is a similarity transform, it follows immedi-

ately from equation (4) that

fCRTTT(t) dr =R - fCNIT(t) dr - R71 (5)

Here, we define the notion, determinant curve, of an
object as follows.

Definition) Determinant Curve
Given an incremental circle transform
0<1 <L, let

8, a(t),

Aa(r) - Arur(t -T)

M.(1)

forany 7.0 =7 < L.
A L
deto(7) = det (fo M()d ), 0=s7=<L

Then,

is called as the determinant curve of the incremental circle

transform Aru(r), 0=<: =<L.

Since the translation invariance of the determinant curve
is guaranteed by the translation invariance of incremental circle
transform in Property ICT-1) and the line integral in (5) is
invariant with respect to the shift of a(0) on C, the following
properties of the determinant curve are easily established.

Property DET-1)

The determinant curve is invariant with respect to
the cyclic shift of starting point for object boundary
description.

Property DET-2)

The determinant curve is invariant with respect to
the translation of an object.
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Property DET-3)

The determinant curve is invariant with respect to
the rotation of an object.

proof)

Referring to equation (5),

fc T,(1) dt = R -fCM,(r) dr - R
Then, RT

det ( fc T.(e) dr )

n

det (R - fcM,(t @ -R71)
det (R) - det ( M) dr ) - det ®R™Y

0

Since det (R) = det (R™!) = 1,

detcn ()

= det (| T, dr)
RT

= det ( | M) a )
= dete(n)C .

Therefore, the determinant curve of  «(r),
0 =<t =< L,is the same as that of oy, (1), 0 <1 < L.

(QED)

In the following the relationship between two determinant
curves for an object and its dislocated-and-magnified object
will be investigated. To be specific, let two contours in Fig.
1, C5 and Cggy, be expressed by

Cs : ag(m), O t

Copr © Qgpr(mt) . 0

A A

< L,
=1 L

where m = fc dr / fcdt . And the relationship between C
s

and each contour is represented as follows :

0
ag (mr) m 0 a()
=10 m 0
1 1
0 0 1
m cos 8 — m sin 8 x.
A
agpr(mt) a(r)
) = m sin © m cos 8 yCA 1
0 0 1
Then, suppose that
m 0
K = s
0 m
ag(m) =K -a(t), 0 <:t <L
and
A, o5 (mr)
= ag( m(r+ar) ) — ag(mi)
= K - ( a(t+Ar) - ar) )
= K- Aaf) (6)



That is,
K- Aa(r) .

ag(m) = K - a(t)  implies A, ag(mr) =

Therefore, we can derive the following result that is very
efficient for pattern classification using the determinant curve
of an object.

Property DET-4)

Let agpr(mt), 0 =<t < L be a dislocated and mag-

nified curve of a simple closed curve, a(r), 0 <r <L,
where m = dt | dt. Then, for any 7,

Cser C
O0=v=<L,

dete_ () = det(K)? - detc(x)

RT
where

K =

0 m
proof)
Let
M, (1) = Aa() - Aa(-T)

Q.() = 4, o5z (m) - AmruSTRT( m(t—1))

for an arbittary v, 0 < v < L. From equation (3) and
equation (6),
Q) =(K- -R-Aa()) (K- R Aa(t—-r))
=K -R-M() R K

Since the Q_(¢) is a linear transform, we have

di
fCSRTQT(t) '

-1
=K-R-fCM,(t)dz-R - KT

Therefore,
detC (m)
= det( Q (¥) dr )
= det(]( "R - fM(r)dt- CKT)

= det(K) det(R). - det( M) ) - det(R™}Y) - de(KT)

= det(K)? - det( M) d)

= det(K)? - dete()

since det(R) = det(R™)) = 1 and det(K) = det(KT).
(QED)

Therefore, we can conclude that the determinant curve
of an object can be effectively used as an image feature for
shape classification since the determinant curve of an
object not only is invariant to object translation, object
rotation, and variations in the starting point for incremen-
tal circle transform, but also can be normalized, being
insensitive to scale variations of the object.

In section III, the validity of the above statement
will be shown by experiments.

3. EXPERIMENTAL RESULTS

Let there be n kinds of model objects represented by
{o(, 0t =L;, i =1,2,,n}
the theory in Section II, we propose an algorithm for pattern

In consideration of

classification as foilows :

Step 1) Grab a binary image.
Step 2) Find chain codes of objects in the image.

Step 3) Determine the feasible radius of the incremental cir-
cle in consideration of the size of the perimeter of each
choose

object. For example,

L

r = —

10

where L denotes the perimeter of an object and r
represents the radius of the incremental circle.

Step 4) Perform the incremental circle transform for each
object.

Step 3)
object.

Find the normalized determinant curve for each

Step 6) Calculate the sum of absolute error between deter-
minant curves of a real object denoted by a(),
0 <=t = L and n model objects.

L
distance(i) = fo | det, (m;7) — det,(7) | d-, (7

i=1,2,-,n where my =L, /L.

Step 7) Find I, where

I = Min {distance(s) | i = 1,2, -, n }.
i

Step 8) Classify the real object as being the model with
o), 0 <t <L;.

The algorithm is applied for the set of rectangles shown
in Fig. 2. Determinant curves of incremental circle transform
for the five rectangles are shown in Fig. 3. And a table of
distance values is found as shown in Table 1. For other
object set given in Fig. 4, determinant curves and a table of
distance values are obtained as shown in Fig. 5 and Table 2
respectively. Accordingly it is noted that the data in Table 1
and Table 2 suggest that the determinant curve of an object is

useful as an image feature for object classification.

Finally, we have compared the processing time of the
propused algorithm with that of the method using fourier



descriptors{3] of an object. Determinant values at eight sample
points are used for the proposed method while sixteen normal-
ized fourier descriptors are adopted for the method in [3].
The processing time is measured for the simple rectangular
objects in Fig. 2, and the time table in Table 3 is obtained.
In average, the processing time is improved by the proposed
method as much as a factor of 299, In addition, if the pro-
posed algorithm is applicd for more complex objects, the pro-
cessing time will be improved still more in comparison with
the method in (3].

All of the algorithms are implemented in C-language and
installed in the visual processing unit{8] whose central proces-
sor is MC68000(10 MHz)-based system controller equipped
with a coprocessor MC68881 for floating point arithmetic.

4. CONCLUSIONS

A {ast pattern classfication algorithm for two dimensional
occlusion-free objects 1s proposed, based on the incremental
circle transform of each object boundary contour. The pro-
cessing time is shortened by reducing the number of calcula-
tions for trigonometric or exponential functions in the algo-
rithm. In addition, the algorithm is robust to noise in boun-
dary contours since not only the correlation(auto/cross correla-
tion) and the line integral lessen the effect of the noise, but
also the incremental circle transform uses average differential

rates of the boundary contours.

The algorithm, however, is yet to be improved in con-
sideration of processing time, for the correlation of the incre-
mental circle transforms describing an object boundary contour

necds a number of multiplication.
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object 1 3 4

1 0.00 - -

3 0.15 0.00 -
041 041 0.00

Table 1. Distance Values between Objects in Fig. 2

object 1 2 3 4
1 0.00 - - -
2 738 0.00 - -
3 570 324 0.00 -
4 721 208 336 000

Table 2. Distance Values between Objects in Fig. 4

Object Processing time (msec)
Number Determinant Curve Fourier Descriptor
1 7323 10434
2 7502 5348.2
3 9184 12175
4 7348 10824
5 11537 41243
Average 857.88 2563.16

Table 3. Processing Time
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