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ABSTRACT

A theoretical and experimental study of a
single link flexlible arm with a tip mass is presented
for the translational end-point positioning. The
problem of shifting the end-point from its initial
position to the commanded pozition by the amount of
wd 1s considersd for the open loop control such that
the base follows up the given path function, The
theoretical resulls are obtained by applying the
method of the Laplace transform to the governing
equation, and the solution is calculated by the
method of numerical inversion. Experimental results
are obtained and compared with the theorefical ones.

1. INTRODUCTION

In the past few years, the requirements of high
performance on industrial robots have led to the
consideration of structural flexibillty in robot. arm.
In this case, one has to make the moving parts of arm
more lighter. However due to the flexibility of arm,
the oscillation are generated and the assumptions for
the rigid arm are no longer applicable, 0One then has
to control the arm so that the vibration is not
induced and the high speed positioning is achieved.

Many papers have been published on the flexible
arme during the past few years, Cannon and Schmitz,
¢1" Skaar and Tucker,2? Yuh,2’ Tahara and Chonan,
‘4 et al. studied the open—loop and the closed-loop
end-point  controls of a single link flexible
manipulators.,  But most of these papers concerned
with the rotalional motion and only a few papers of
S, Hur'®’, Llee, Chonan and Inooka‘®’, Sasaki and
Inookat?>, K.H. Yu'®? dealt with translational motion
of the flexible arm.

In this paper, the end-point positioning of a one
link flexible arm with a tip mass under the
translational movement is studied analytically and
experimentally. The beam is mounted on a trans-
lational mechanism driven by the ballscrew, whose

rotation is controlled by the IC servomotor, The
problem of shifting the end-point from the initial
position to the commanded positlon is studied for

the open loup vontrol Lo use the given path functions
as input to the base movement. In thls case, the
displacement of the end-point is measured according
to the varistions of the rising time of base movement
up to the desired position.

The governing equation of system is constructed

based on the Bernoulli-Euler theory. The solution for
the governing equation is obtained by applying both
the method of the Laplace transform and the Numerical
inversion method proposed by Weeks‘?', The numerical
and experimental results are presented here.

2. FORMULATION AND ANALYSIS

Figure 1 shows the single link flexible arm
studied in this analysis. It is composed of a DIC
servomotor, a8 ballscrew mechanism, a flexible arm of
{ength L and an end-point payload. The base of the
arm is transiated by the ball screw driven by the
motor. As shown in the figure, the x-axis is placed
along the axis of the arm and the z-axis is normal to
the x-axis. And the y~axis is perpendicular to both
the %~ and z-axes. One assumes that the arm deflec~
tion is seen only in the x-z plane.
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Figure 1. Geometry of Flexible Arm and Coordinates

In this model, denoting the lateral displacement
of the arm by w(x,t), the governing equation of the
arm by Bernoulli-Euler beam theory is written as

8 a%w(x,t) a%w(x, 1)
+0A =

[99)] E[(1+C—) 0
a8t ax4 at?

where E Is the Young’s modulus, o is the mass
density, I is the moment of inertia, A is the cross-
sectinnal area, C is the internal damping coefficient
of the arm, and t is time,

One next considers the boundary conditions of the
arm displacement. and force equilibrium at x=0 and x=L
respectively and brings in the geometrical relations
of ballscrew. Then one ocsn get the following
equations (2) to (6).

2y w,t) =0 aw(0,t) /8t = 0




42 3
(3) Mo——w(0,t) + Ca—w(0,t) = R + V
at2 at

a2 aw(l,t) 3 3%w(L,t)

4 Jem (== ) = = EI(1 + C)
) Patz  ax at  ax*
a2w(L,t) a_ &3w(L,t)
(3} Mp———— = EI(1 + (—)———
) M ¢ 8t ax3

(8) Picosp = Rsing + u(Pesing + Roose)

where M. 1s the mass of {he pedestal, Ca Is damping
coefficient between base and ballscrew, R s the
reaction force bretween the pedestal and the screw, V
is the shear force from the arm. Pe, u and ¢ are the
radial force acting on the ballscrew from the
padestal, the friction cvoefficient and the lead angle
of ballscrew respectively, Mp is the mass of the
payload and Jp is the polar moment of inertia of the
payload arvund the y-axis. Next, the equilibrium of
moment around the motor shaft is given

, ay a0
(7)) Jns &= - pe = Proe T
2 3l

at.

where Jon i3 the ipertia moment of the motor shaft, ¢
is the damping coefficlent of motor shaft, 6 and r
are the rotational angle and the radius of ballscrew
respect.ively. And the torque T applied by the motor
is given by

{8y T =FKela

where la is the armature current and K. is the torque
constant of the motor. To get the arm motion under
control, one has to prescribe the armature current ia
in the motor circuit, For this purpose, one gives the
path function to the base by means of computer as an
input. which makes the end-point move to the commanded
tip pogition w4, which is measured by a sensor. This
input of path function Is used as the basis for
applying torque to the arm base through the motor.
The clrouit equation to the current. ia to be
controlled is

= Gawd(0, t)

where {a is the motor inductance, Ra is the circuit
resistance of motor armature, Eb is the back electro-
motive force, Gd is displacement gain., wa(0,t) is the
desired pusition,

One solves the problem by applying the method of
the lLaplace transform with respect to time. Assuming
that the arm is resting statically at t=0, one has
the Laplace transformed equation of (1), which is
simplified as

a4W(x,s)
(10) -t = LA(x,8) = 0
ax4
o As?
he 4z Lm0
vhere & EL(1 + Cs)
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Then, the general solution of equation (10) is given
by

(11) W(x,s) = asin{x + Beostx + psinhix + dcoshix

Here, s is the Laplace transform parsmeter, a to &
are unknown constants to be determined from the
boundary conditions, Substituting equation (10) into
the transformed equations of (2)-(8), and further
introducing the transformed current Ia(s) obtained
from equation (9) into the resulted equations, one
has a type of simultaneous algebrai: equations of the
form

(12) {a;i;lla, 8, 81T = [Wa(0,s) O, O]T

where W4(0,s) is the commanded position of the arm
base, which is given by amplitude of the path
function and is also the same amount of the displace-
ment as the end-point at the statical state of arm.
8ij, ¢i.j = t.2.3> are given in the Appendix. After
having &, 3, and & from equations (12), cne has the
transformed displacement represented by Wa as

W(x,s)

13 - - =
) Wa(0,s)

1
&{ Aalsinix - sinhfx) +ABcostx
+AS coshtx}

where Aa, AB, Ab, A are follow as

Aa = azzass - azszasz

AB = a23831 ~ 821833

Ad = azta32 - azzamn

A ay1(az2a33-823832) *+ 812(832831-812833)
+ a13(arzasz-az22a31)

Since one considers the path function P(t) applied to
the arm base, the desired function is given by
(14)  wa(t) = w(0,t) = Wa*P(t)

Finally, the input-output equation for the open luop
translational positioning is written by

Wix,s)

as =

1
= —A—{Aa(sintx - sinhtx) +ABcostx
+Ad coshtx}P(s)

In the numerical examples, one calculates the inverse
integral of equation (15) by the numerical method
proposed by Weeks¢®?,

3 EXPERIMENT

Flgure 2 is shown the whole experimental setup.
The actuator is a DC servomotor(Sanyo Denki USO8T)
which 1s driven by the armature current controlled by
the computer input. Since the current. signal is fed
back to the motor armature, the base of arm is moved
through the ball screw mechanism translationally. The
physical parameters of the motor are

Jm = 1.688%10"4  kgm2
£ = 4,9581x1073 kgm?/s



Kt = 1.8829%10"" Nm/A
K’ = 3.1194x10"!  V/rad
La = 5.5x1073 H
Ra = 8.7 Q

And the physical parameters of the ballscrew and
the flexible arm of an aluminium besm with a
rectangular cross section of thickness B and width H
to be used in this experiment. are

o = 2,4477x103 kg/m?,
r = 0.0072 m,
Pt = 0.004 m,
4= 0.0035,
Mo = 0.44 ke,
g = 12,10%10°%  n,
H = 2.01x10°% m
arm A L = 0.345 m
E = 6.1986x10"" Pa
¢ = 0.1149x10-* @
Mp = 16.13x10°3 kg
Jp = 6.649%10-6 kgn2
arm B L = 0.550 m
E = 4.9566 x 101¢ Pa
C = 0.3910 x1073% s
Mo = 30.94x107 % kg
Je = 1.275x10"® kegn?
Laser Sensur
Flexible Arm
Frncodar
serv TRM/AT
Mitar :
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Figure 2. Experimental System

The tip displacement of the arm is measured by a
laser beam sensor(Kevence LX-130T), which is set in
space so that the strip of the laser beam between the
transmitter and the recelver is partially screened by
the vibrating arm tip. After nbtaining the trans-
mission constant. of the voltage to the displacenent,
one determine the tip displacement from the
output of the sensor. The voltage signal from the
sensor 15 then amplified by the preamplifier
(Max. +5V) and put Into a 12 bit A/D converter. After
that, the digitized signal is sent to a microcomputer
(IBM/AT Compaltible} to know the end-point position.
The output signal from the computer is transferred to
a voltage signal through a 12 bit IVA converter. It
is then currenf. through the power
amplifier and finally fed back to the armature to
drive the naotor. The information on the tip
displacement. Is sent. to the computer from the laser
sensor via the A/D converter every sampling rime Ts .
Here, In this experiment, Ts was sel to 3ms.

can

converted to a
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Figure 3, The free vibrations of the ftlexible arm
(experimental results); (a) arm A with natural
frequency of 6.5 Hz and 0.01907 logarithmic
decrement,, (b) arm B with natural frequency of 2.5 Hz
and 0.01492 logarithmic decrement.,
+

The free vibtations of the flexible arm A and B as
testpieces are shown in figure 3(a) and 3(b). With
this figure obtained by experiment, one can get ithe
natural frequency and logarithmic decrement of
flexible arm. Figure 3(2) gives the natural fre-
quency of 6.5 Hz and 0.01907 logarithmic decrement. of
armt A. Figure 3(b) also gives the natural frequency
of 2.5 Hz and 0.01492 logarithmic decrement of arm B,
Une determines the damping factors of arm by using
these logarithmic decrements. The longer arm B has
bigger flexibility and lower natural
arm A as shown in figure 3.

frequency than

4. NUMERICAL AND EXPERIMENTAL RESULTS

One introduces a path function which can give the
smosth movement. to the arm base from the initial
position to the desired position without the feedback
within the some limited time. The path function used
in this paper is given as
(18} P(L) = sin2wl 0< L n/hw
0 t

0

on

To oblain the numerical results, after substituting a
faplace transformed equation of (18) into equation
(15}, one calculates the end-point  displacement
w(L,t) to the variation of base movement by applying
the numerical method of the inverse Laplace transform
proposed by Weeks,

Figure 4 through 9 show the response of the end-
point when the path function given by equation (1€
is applied to the arm base. Figure 4, as a
theoretical results, shows the end-point. displacement.
of arm A and trace of base to the variation of rising
time coming to the desired position of base. Figure §
shows also the end-point displacement obtained by
buth theorical and experimental results to the rising
time variation. During the period of arriving at the

desired position from the initial position, the tip



position obtained by experiment. results. as shown in
figure 5, follows up the theoretical tip position,
which coincides with  that of the base wery well.
with having a little of time phase. In this case, the
end-point.  displacement. with the base
movenent. at te=0,52 very well both theoretically and
experimentally. Generally, the rapid reaching of base
to the desired position brings on an increment of
max, overshoot value., However as shown in figure 4 or
5, one can find that the max. overshoot is first
increagsed within a limited range of time and after
then ecreased within any range not to be continuing
Lo increase the max. overshoot value according to be
shortening of the rising time for the theoretical and
experimental results. Figure 4 and 5 show such a
state that the increament and decreament of the max,
overshoot. value are repeating to the variation of
rising time. After repeating of this situation, the
max, overshoot value conlinues to increase eventually
under Lhe rapid rising time.

Figure & shows one example of the theoretical
responge of tip position for arm B at the fast rising
time of base, tr=0.1 second. It has nearly same
frequency as the natural frequency of free vibration,
The relation between  max. overshoot value of the
end-point, in arm A and the variation of rising time
iz shown In figwe 7. From this relation,
reasonably and approximately finds the optimal rising

coincides

one
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Figure 4. The end-point displacement of arm A and the
base movement to the variations of rising time;
(theoretical results).
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Figure 5.The end-point displacement of arm A obtained
bv the 1; theoretical and i experimental results.

Figure 6. The tip response of arm B to have the tast
rising time of base st tr = O.lsec. (Une theorelival
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Figure 7. The relation between max. overshoot of the
end-point in arm A and variations of base movement.
(—e—! Numerical result,—-x—-: Experimenta!l result)
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The end-point displacement of arm B and the
of rising time:

Flgure &,

base movement to  the variations

(theoretical results),

Lime base muvement. not Lo be generate the
vibration without feedback information of the tip
displacement, by using the numerical results.

Figure & and ¢ also show the response of the
end-point in arm B to the base movement theoretically
and experimentally. In this case, it needs a large
rising time in order to reach the commanded position
without vibration because of the big flexibility ot

for

hean and low natural frequency. But it has sape
inclinations as those of the arm A.

5. _CONCLUSIONS

A theoretical and experimental study has been

presented for the translational end-point positioning
of a one-link flexible arm shifting from its initial
position to the commanded position by the amount of
wa. The flexible arm prototype at the Dept. of
Mechanical Engineering of Chonbuk National University
has been chosen for developing a simulation study.
Results obtained can be summarized as follows.

(1) Translational end-point pusitioning ot one link
flexible arm is sufficient to make the arm tip stay
at its commanded position within the limited time not
{0 be large by using a path function of base to move
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Figure 9.The end-point displacement of arm B obtained
by the 1 theoretical and 2; experimentsl results.

smoothly  without  feedback  information of  the
end-point if the arm has a flexibility to be
egty Lo generate the vibration.

evern

(2) Since good agreement. between theoretical and
experimental results is reasonably obtained, one can
find the rapid rising time of base not to be generat~
the arm viblation by using the numerical results
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aij's in equation (12) are given as
=0
= a3 =1

Jps?t{costL ~ coshtl) - EL(1+Cs)
t2(sinll + sinhtl)

~Jps?lsin . - EI(1 + Cs)r2costl
JpszisinhLL.* EI(1 + Cs)¢2coshyl.
= Mps2(sintl —- sinh{L) + EI{1+Cs)

£3(costLrcoshL)

MpsZeoostL - EI(1 + Cs)i3sinl i,

= MpsZcoshfL - EI(1 +Cs){3sinhfL



