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Abstract

A synthesis of feedback control-law with combined Hy/H
performance criteria is proposed for discrete-time systems,
under the assumption that the state is available for feed-
back. An auxiliary minimization problem is defined to
enforce the H,, disturbance attenuation constraint while
minimizing the H; performance bound. The design equa-
tion is presented in terms of a modified Riccati equation
which leads to the standard LQ solution when the Hg
constraint is completely relaxed. The results of the pa-
per clarify the correspondences between Il,/ He, results in
discrete-time systems and their continuous-time counter-
parts.

1.Introduction

Recently, much interest has been devoted to the de-
sign of feedback controllers for linear systems that mini-
mizes the H,-norm of a specified closed-loop transfer func-
tion(4,5,6]. Heo approach has been known to be a powerful
method in dealing with the problem of robust stability,i.e.,
obtaining closed-loop stability in the presence of system
uncertainty. More recently, the design of feedback con-
trollers with the combined H,/H,, performance criteria
has received a great deal of attention. The greater inter-
ests in the latter problem have been encouraged by the
fact that it represents a problem of optimal nominal per-
formance with guaranteed robust stability[1,12,13,14]. In
this paper, a such combined H,/H,, control synthesis in
discrete-time systems is considered.

Continuous-time solution to the combined H,/H.,, con-
trol problem has been previously derived by Bernstein and
Haddad[l], where a dynamic reduced order controller is
given in terms of solutions to the modified Riccati equa-
tions. This result has also been extended to a more general
problem. The discrete-time Hy/ H,, however, has received
a little attention. There is, of course, the well-known bilin-

ear transformation which can be used to convert between
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continuous-time and discrete-time models. The applica-
tion of this transformation to the results of continuous-
time case, however, will not give satisfactory results for the
corresponding discrete-time problems[3]. Consequently,
the discrete-time H,/H,, control problem is of interest in
its own right.

Independently with the work of Bernstein et. al. who
recently also consider the discrete-time case in the de-
ceutralized setting[15], we are able to derive the Hy/H,
state feedback controller. Compared to their results, first,
we note that our Riccati equation which contains addi-
tional quadratic term, is directly related to the discrete-
time LQ solution, and corresponds to the continuous-time
H,, solution. Secondly, our Riccati equation is of the form
that arises in discrete-time games and LEQG(Linear Ex-
ponential Quadratic Gaussian) solution, the problems to
which H, design is known to has some interesting connec-
tions(1,4,6,8]. Finally, our results provide relations with
some existing results of the standard H,, control prob-
lem(2,3]. We note also that, there might be some diffi-
culties in the computational algorithms for obtaining the
solution to the design equation derived in {15]. The modi-
fied Riccati equation of our results, on the other hand, can
be easily solved using the eigen vector method via the as-
sociated Hamiltonian matrix, as illustrated in a numerical
example.

In [3], solution to the standard discrete-time H,, prob-
lem in state feedback case was solved using the saddle
point solution to the corresponding discrete-time games.
However, no H, interpretation was provided in [3]. Thus,
the present paper attempts to provide H, interpretation in
the context of H, design constraints as done for continuous-
time case in [1]. Moreover, we shall remove the orthogo-
nality assumptions used in [3]. In this paper, however,
we consider a certain class of the combined H,/H,, con-
trol problem where the H; and H,, weighting matrices are
equalized and we assume that the states are available for
feedback.



2. Problem Formulation and
Preliminaries

Consider time invariant discrete-time systems described
by

z(k+1)
z(k)

Az(k) + Byu(k) + Byw(k)
Ciz(k) + Dyau(k)

(1)
(2)
where w(k) € R™ is the disturbance vector; u(k) € RP

is the control vector; z(k) € R" is the state vector; and
z(k) € R' is the controlled-output vector which may also

be interpreted as the performance variable. Next, the fol-
lowing standard assumptions on the plant are made,

1. (A, B;) and (A, C,) are completely controllable and
observable, respectively;

2. D{z[Cl D12] = [0 I].

Assumption 1 guarantees that the set of stabilizing con-
trollers is nonempty, while assumption 2 amounts to or-
thogonality of Cyz(k) and D) u(k) in the output. In sec-
tion 5, assumption 2 will be removed.

The combined H,/H,, considered in this paper is as
follows : for the plant given by (1)-(2), determine control-
law

u(k) = Kz(k) 3)

such that the following design criteria are satisfied,

1. the closed-loop system constructed by equations (1)-
(3) is asymptotically stablei.e. all eigen values of
A := A+ B,K lie inside the open unit circle;

2. the closed-loop transfer function from w(k) to z(k)
Tow = (C1 + D K)(2I — A— B, ) ' By (4)
satisfies the H., disturbance attenuation constraint
ITewlleo < v (5)
with v > 0 a given constant;
3. the H, performance criteria defined by

J = lim E[z'(k)Raa(k) + v/ (H)Rau(k)]  (6)

is minimized, where £ denotes the expectation.

Note that the standard H,, problem as considered in[3,4],
does not deal with H, performance criterion.
The closed-loop system constructed by (1)-(3) can be

written as

Az(k) + Buw(k)
Cz(k)

z(k+1)
z(k)

(M
(8)

it
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where

A':=A+le(, é:: Bl, é:= Cl+D121{ (9)

and the H, performance criterion defined in (6) is also
given by
J:= klim El'(k)(Ry + K'R K )z (k)] (10)

Since, in the present paper, we consider the equalized

H,/H,, control problem, we may further assume that R,
C}Cy and Ry = Dj, D12, so we can rewrite (10), using as-

sumption 2, as
J = lim £[¢'(k)C'Ca(k)] (1n

Moreover, if A is asymptotically stable for a given con-

troller K, the performance criterion (11) can be further
expressed by [9]

J=tr(QBR) (12)

where Q is the solution to the following Liapunov equation

Q=AQA+CC (13)

Remark 2.1
The performance criterion described in (10) is also given,
alternatively, by

J =tr(PC'C)
where P is the solution to the Liapunov equation
P=APA' + BB
and is the steady-state closed-loop covariance defined by
p= Jim E[z(k)z'(k)]
The following lemmas are useful in deriving the main
result of the paper.

Lemma 2.1 Let G(z) := C{zI — A)7'B, with A a sta-

ble matriz. If there exists a symmetric positive definite

solution to the following quadratic matriz equality (QME)
X = A'XA+ XB(®*I+B'XB)'B'X+C'C (14)
then |G|l < 7.

Proof:
First, we rewrite QME (14) as

X=AXA+L'RL+CC
where
L:=(y1+B'XB)'B'X, R=(+1+ B'XB),
from which we obtain

C'C = (271 — AYX(2I — A) + (271 — AYX A
+A'X(zI — A) - L'RL



Using the last equation and employing the identity (U'~"+
VZ W) ! = U-UV(Z+WUV)"'WU, we finally obtain
the following spectral factorization of 21 — G*(2)G(z),

VI —G*(2)G(z) =[] - Lz"%(z71I — A)'BJ'R
[I - Lz(zI — A)'B].

Now, with * denoting the complex conjugate, the right
hand side of the last equation is of the form P*(z)KP(z).
Using the assumed existence of positive definite solution to
the QME (14) and the fact that P*(z)RP(z) > 0,on noting
that B > 0, the equation implies that G*(z)G(z) < 7?1,
and thus, ||G|le < 7- Q.E.D.

Lemma 2.2 IfQ > 0 and A is stable, then the Liapunov
equation P = A'PA + Q has a unique solution P, and
P>0.

Lemma 2.3 Suppose P > 0, Q > 0, (A,QY?%) is de-
tectable and A’/PA — P + Q = 0. Then A is stable.

The disturbance attenuation constraint (5) is enforced
by replacing the algebraic Liapunov equation (13) by a
quadratic matrix equality which gives an upperbound to
We note that this step

slightly differs from its continuous-time counterpart where

the H, performance criterion.

an algebraic Liapunov equation is replaced by the usual
Riccati equation(1].

Proposition 2.1 Let the controller K be given and as-
sume there exists a symmetric positive definite solution Q
to the following QME

Q=AQA+QB(YI+BQB'BQ+C'C (15
Then
(A,C) is detectable (16)
if and only if
A is asymptotically stable. (17)
In this case, the following conditions hold,
L [Tl < (18)
2. Q=0 (19)
3. J>J (20)
where
J = tr(QBB" (21)
Proof:

Using the results of {7,11], it can be shown that (16) implies
that (A,V1/2) is also detectable, where V = QB +
B'Qé)‘IB'Q + C'C. As it is assumed that there exists a
positive definite solution to (15), it now follows that Ais
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asymptotically stable by lemma 2.3, on noting that V > 0.
The converse is immediate [1,15]. Now, using lemma 2.1
we immediately obtain the disturbance attenuation con-
straint || Toulle < 7. (19) is proved by subtracting (13)

from (15) which gives

Q-Q=AQ-Q4
+QB(y*1 + B'QB) ' B'Q (22)
Applying lemma 2.2, on noting that QB(v*I+B'QB)-'QB
is positive semidefinite and the fact that A is asymptoti-

cally stable, it now follows that

Q-Q>0 (23)
which prove (19). Finally, using (19) and the definition of
J given in (21), we immediately obtain (20). Q.ED.

It follows from proposition 2.1 that the existence of
positive definite solution to (15) and asymptotic stability
of A leads automatically to the satisfaction of H,, distur-
bance attenuation constraint. Furthermore all such solu-

tions give an upperbound on the H, performance criterion.

3. Auxiliary Minimization Problem and
Necessary Conditions for Optimality

In this section we define an auxiliary minimization prob-
lem and derive the necessary conditions for optimality
which explicitly synthesize the desired controller. From
proposition 2.1, it follows that the existence of positive
definite Q satisfying (15), together with the generic con-
dition (16), leads to the following,

1. closed-loop stability;

2. prespecified H,, disturbance attenuation;

3. an upperbound for the H, performance criterion.
Hence, recalling the problem formulated in section 2, it
remains to determine &' which minimizes 7, and thus pro-
vides an optimized bound for the actual H, performance

J. Therefore, J can be interpreted as an auxiliary cost

which leads to the following minimization problem.

Auxiliary Minimization Problem: Find {K, Q} which min-
imizes J subject to (15), with Q) positive definite.

Solving the auxiliary minimization problem, we obtain the
following necessary conditions for optimality.

Theorem 3.1 If {K,Q} solves the auziliary minimiza-
tion problem, then the controller K is given by

K =~(I+BjQB;) 'B;QA (24)
where (@ 1is posilive definite satisfying
Q=AQA~AQB,(I+ Bj@B,) 'BQA
+QBi(v*1 + BiQB,) ' BiQ + C1Ch (25)



Furthermore, the auziliary cost is given by

J = tr(QB,By) (26)

Conversely, if there exists a positive definite Q satisfying
25), then {K,QY} given by (24} and (25) satisfies (15)
with the auziliary cost (21) given by (26).

Proof :
To optimize (21) subject to (15), we construct the follow-

ing Lagrangian

L(K,Q,P)=tr{QBB +[-Q+ AQA+ QB

(3 + BQB)"1B'Q + C'C}P} (27)
where P is a symmetric matrix. The stationary conditions
aL

0
apply the rules for calculating gradient matrix proposed

in [10] to obtain

are obtained by setting =0 and ng- = 0. Now, we can

%= BB -P+ APA + PQB(*I
FBOB)E + B(v + B'QB)'B'QP
=By + BB 'BQPQB

(v + BQB)'B' =0 (28)
Using (9) and assumption 2 of section 2, we have
2 = BIQAP + ByQ'AP + ByQ B, K P
+BiQ'BKP' + KP4+ KP' =0 (29)

Employing the fact that @ and P are symmetric matrices,
we obtain the following expression for controller X from

equation (29),

K = —(I+ ByQB,) ' ByQA (30)

Next, substituting (9) into (15), on noting assumption 2,
yields

Q= AQA+ K'BLQA + AQBK + K'(I
FBIOB)K + QBi(v*1 + BIQB) " BIQ
+C{Cy

Now, substituting K given in (30) into the last equation
and performing some manipulations to the resulting terms,

gives

Q=AQA - A'QB,(I + ByQB;) ' ByQA

+QBi(7*] + BiQB:)T BiQ + C1Cy (31)

Next, equation (26) follows immediately from (21). To-
ward this end, it should be noted that equation (28) is
superfluous for the present problem. This equation, how-
ever, might be required in deriving solution for a more
general problem, such as output feedback controller for
nonequalized H,/H,, problem (see [l], for comparison).

We proceed to prove the converse part of Theorem 3.1.
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Now, suppose {K,Q} satisfy (24) and (25), where Q is
positive definite. We can rewrite (25), using (24), as

Q= (A+ B:K)Q(A+ ByK) + QB (1
+B,QB,) ' BQ + CiCy + K'K

which, in view of (9) and assumption 2, is equivalent to

Q=AQA+QB(*1+BQB)'BQ+C'C  (32)

In this case, the auxiliary cost given by (21), which is
equivalent to (26), holds. Q.E.D.

4. Sufficient Conditions for the H
Disturbance Attenuation

Similarly to the sufficient conditions derived in [1] for
continuous-time case, we now combine proposition 2.1 with
the converse part of theorem 3.1 to obtain the conditions
underwhich the closed-loop stability, the H,, disturbance
attenuation, and an optimized H, performance bound are

guaranteed.

Theorem 4.1 Suppose there exists a positive definite )
satisfying (25) and let K be given by (24). Then (A,C)
is detectable if, and only if, A is asymptotically stable. In
this case, the closed-loop transfer function T, satisfics

”TZWHOO <v

and the actual H, performance criterion (6) satisfies the

(33)

bound given by

J < (QB.B)) (34)

Proof :

Using the assumed existence of positive definite @ satisfy-
ing {25) with K given by (24), the converse part of Theo-
rem 3.1 implies that @ satisfies (15). In view of Proposi-
tion 2.1, it now follows that the detectability condition (16)
is equivalent to asymptotic stability of A. In this case, Hy,
disturbance attenuation (33) and H, performance bound
(34) are satisfied. Q.E.D.

Remark 4.1

It is interesting to note that the modified Riccati equation
(25) corresponds to the results of [3] which is obtained
via the solution to the corresponding discrete-time games.
Now, applying matrix identity (U~! + VZ!W)™ 1 = U —
UV(Z+WUV)"'WU and denoting P~! := Q"' +47*B B,
where positive definite @ satisfies (25), straightforward
manipulations to equation (25) yields [3]

P=C[{Ci + APAT'A
A=1+ (BB} ~~7*BB})P
which is the Riccati equation arising in discrete-time games

[2]. Some manipulations to the above equation lead fur-

ther to the one arising in LEQG control problem(16].



Remark 4.2

For v that approximates infinity, equation (25) clearly re-
duces to the standard Riccati equation of LQ problem.
Therefore, solution @ of {25), under the assumption 1 of
section 2, is guaranteed to be positive definite. Now, if
condition (33) is also satisfied for enough small 4, it is of
interest to know whether one such controller can be ob-
tained by solving (25). Under a strengthen assumption,
i.e. B is of full rank and (/i, ¢ ) is completely observable,
lemma 4 and lemma 5 of [3] guarantees that (15) possesses
a solution for any controller satisfying (33). Thus, as far as
the auxiliary minimization has at least one extremal, the
above sufficient condition will be necessary as well. When
these conditions hold, we immediately obtain the following

result.

Proposition 4.1 Let v* denote the infimum of |Towlloo
over all stabilizing controllers and suppose that the auxzil-
tary minimization problem has a solution for all vy > 4*.
Then for all 4 > ~*, there ezists positive definite Q) satis-
fying (25).

5. Removing the Orthogonality
Assumption

[u this section we remove the orthogonality assumption
cmployed in the previous sections and immediately obtain
the following results.

Theorem 5.1 If {K,Q} solves the auziliary minimiza-
tion problem, then the controller K is given by

K = —(D};D12 + BQB:) /(BQA+ D{,Ch)  (35)

where Q is positive definite satisfying
Q= AQA~ (A'QB; + C{Dy,;)(D{, D
+B;QB:) 7 (B,QA + D1,Ch) + QBi(*T

+BiQB) " BIQ + €I, (36)

Furthermore, the auriliary cost is given by

J = tr(QB, B)). (37)

Conversely, if there exists a positive definite Q satisfying
(36), then {K,Q} given by (85) and (36) satisfies (15)
with the auziliary cost (21) given by (37).

Proof :

Construct the following Lagrangian

LK, Q,P)=tr{QBB +[-Q + A'QA
+QB(*T + BQB)1B'Q + C'C)P)
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and obtain

2L
8Q

BB'~ P+ APA' + PQB(+*I + BQB)~
B+ B(v*I + B'QB)'B'QP — B(»*I
+BQB) 1 BQPQB(*I + BQB) B =0

8¢ = BJQAP + BJQ'AP' + BiQB,KP
+ByQ'B,K P! + D},C, P + D},C, P'
+D{,D,K P + Dl Dy, K P = .

The proof of the theorem then proceeds as in the proof of
Theorem 3.1. Q.E.D.
As in section 4, we readily obtain the following.

Theorem 5.2 Suppose there exists a positive definite Q
satisfying (36) and let K be given by (85). Then (4,8)
is detectable if, and only if, A is asymptotically stable. In

this case, the closed-loop transfer function T, satisfies

ITeulloo < v (38)

and the actual Hy performance criterion (6) satisfies the
bound given by

J < tr(QB,B!) (39)

6. Numerical Example

The results in the previous sections are illustrated here
using a numerical example. Consider the following time-
invariant discrete-time system :

—-04 0.8

1
12 0.04 } 2(k) + [ 0 }"(k)

z(k+1) = {
1
+ [ 0 ] w(k)
o

115
0 o0

0

2(k) = [ .

} z(k) + [
Actual || Ty |eo, auxiliary performance criterion 7, actual
H, performance criterion J and closed-loop eigenvalues,
for several values of «, are listed in Table 1. The positive
definite solution Q of equation (3.2) is calculated by using
the eigen-vector method via the associated Hamiltonian
matrix given by [3]

H: 7.(11 HlZ
Hy Ha
where
Hll = A+B2B{,(AI)‘101,01
Hie = Y)ABIB] - B, By(A)™

[l —+y*C{C1 B, B]]



[ —72C1Ci B By)
—(ANICiCG
(AN = v7*Cy By By]

HZI
Haz

Note that v — oo corresponds to the standard LQ con-
trol problem. Minimum value 7 of the above example is
found min=2.31, below which there is no positive definite
solution to (3.2) that makes the closed-loop system stable.
The results show that the actual H; performance criterion
is less than or equal to the auxiliary cost, justifying our
technique which replace Liapunov equation by QME. It
is also interesting to note the trade-off between H,, dis-
turbance attenuation and H, performance criterion. As is
well known, H..-norm bound implies a prespecified level
of stability robustness under unstructured uncertainty (via
small gain theorem). Thus, we can achieve the compromise
between robustness and quadratic performance by speci-

fying ~.
7. Conclusion

Control synthesis for discrete-time systems with com-
bined H,/H,, performance criteria has been presented.
Solution to this problem is obtained by defining an auxil-
iary minimization problem which enforce H,, disturbance
attenuation constraint while minimizing H, performance
bound. Similarly to the corresponding continuous-time
case, the solution is given in terms of a modified Riccati
equation arising in discrete-time games and LEQG control
problem. The results of the paper, therefore, clarify the
correspondences between H,/H., properties of discrete-
time system and their continuous-time counterparts.

H,, cons- | actual auziliary actual
traint(y) | |Tswlloo | He-cost(T) | Ha-cost(J)
10000 2.6694 | 5.1005 5.1005
150 2.6693 5.1007 5.1005
100 2.6692 5.1032 5.1005
50 2.6687 5.1113 5.1005
10 2.6502 5.3864 5.1009
8 2.6394 | 5.5618 5.1015
5 2.5924 6.4766 5.1078
4 2.5491 7.6373 5.1192
3 2.4556 12.4761 5.1666
2.75 2.4150 | 17.2265 5.1991
2.5 2.3617 | 34.5406 5.2557
2.45 2.3491 45.3895 5.2718
24 2.3356 68.1585 5.2902
2.38 2.3300 | 86.2353 5.2983
2.35 2.3213 146.3319 5.312
Table 1
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