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Abstract
This paper discusses the problem of designing an
observation function as coarsest as possible in
supervisory control of discrete event dynamic
systems. Some algebraic properties of two sets
consisting of observation functions for which the
given desirable behavior is realizable are
investigated: these sets with a partial ordering turn

Two natural
which
identity mapping,

out not to possess largest elements.

methods of obtaining an observation fuction, is
frequently coarser than the are

also presented. An example illustrates the use of

these methods,

l. Introduction

(DEDS)

with a discrete set of

A Discrete Event Dynamic System is an

event- driven dynamic system

states which may take logical or symbolic values.

The states are changing in response to events which

occur asynchronously at discrete instants of time

W¥hile the issue of modeling, analysis and control of
DEDS is

various expertise

attracting more and more researchers with
it seems unlikely to come up with
in the near future which resolves the
This

usually a very complex man-made system and can pose

an approach

issue in a unified manner. is because a DEDS is

many different problems each of which may require
different disciplines to be efficiently solved. A
reader who is interested in the modeling issue of

DEDS is referred to [1].

Among many models for DEDS, an extended finite

state machine framework [2] based on automata theory

has been proved to be useful in the study of many

qualititive control issues. A typical problem in

this framework is the supervisor synthesis problem in

which we are required to design a supervisor (or

controller) so that the closed loop system behavior

is "confined” in a desired behavior the supervisor

can observe through an observation function the

events occuring in the system and may disable certain

controllable events to occur in order to accomplish

the required job. The closed loop system is depicted

w%~~4~———4 Supervisor }_‘~]

—— L~ e

Observation
Function

String of events

Control
actions

Fig.l. The closed loop systen of a supervisor

synthesis problem
In the supervisor systhesis problem, the desired
behavior is given in the form of a set consisting of
all of which be

generated by the DEDS. The observation function is

desirable strings events can

given a priori and fixed throughout the design

procedure. Since there are uncontrollable events in

the system such as machine-failure. it is in general
impossible to realize the given desired behavior by
Thus

means of control actions from the supervisor.

the supervisor synthesis problem becomes the probiem
of finding maxmal realizable portion of the desired

behavior [2].

In this paper, we are concerned with the converse

to the supervisor synthesis problem; that is. given a

design an observation function
shouid

realizable behavior

in an optima! fashion. Optimality here

represent minimal information that the observation

in

the

stage is reguired to provide to the supervisor

for the supervisor to be able to realize

Thus

order

given desired behavior. in Section 3, a partial

ordering for the set of observation functions will be

introduced and the issue of existence of a largest
element in the set will be examined. Section 4
presents a preliminary result for obtaining an

observation function (a projection) which wmay not

provide the supervisor with the information about the

occurrence of certain events and still enable the
supervisor to realize the given desired behavior. In
section 2, the extended finite state machire

framewcerk will b2 reviewed



2. Supervisory control of DEDS

In the extended finite state machine framework,
the behavior of a DEDS is represented by the set of
all strings of events that can be generated in the
system. Sﬁch a set of strings of events is called a

language, and is often represented by an automaton.

Formally, if X denotes a nonempty set of events
and X* the set of all finite strings of events in X
including the empty string &, any subset of X* is
A language L is said to be closed
In this

called a language.
if it contains all prefixes of strings in L.
paper, we only consider closed languages. For s,t
&€ %*, the product st is the concatenation of two
strings s and t. For L;, Lz € X*, the product LiL2

is defined by
Lilz = { wiwz2: w1 €L, w2 & Lz }.

A (deterministic) Finite Automaton (FA) is a
4-tuple G = (Q, X, &.,q0), where Q is a finite set of
X XQ—Q is a

The state transition function &

states, Qo initial state, and &:
partial function.
is extended to X *XQ in an obvious manner [2]. The

language L(G) defined by
L(G) : { weX* & (w,qo) is defined }

A DEDS is
represented by a FA G, and L(G) corresponds to the

is called the language generated by G.
open loop behavior of the DEDS. The observation
function in Fig.l. is a mapping M: ¥ — A U{&}, where
A is a set of output symbols which the supervisor
can observe,. Again, M is extended to X°* in a

natural manner [3].

Now we partition X into uncontrollable and
controllable events: X=XuyU Xc. The controllable
events can be disabled by control actions from the
supervisor. The supervisor has no control over
uncontrollable events, examples of which are machine-
A subset y of 2

satisfying Zu C 7 is called a control pattern, and

failure, packet-loss, and so forth.

is the mathematical model of a control action taken
The DEDS under the control

7 can execute only the events in jy. Thus

by the supervisor.
pattern
the supervisor in Fig.1 is formally a mapping f:
M(L(G)) — I [4], where I" is the set of all control
patterns, The closed loop behavior Lf is then

described by

i) € € Lt

ii) wo €Ls iff weElr, oc<f(M(w)) and wo €L(G).
In practice, f is realized by a pair $=(S,¢), where

S=(X. A, £.%0) is a FA and ¢: X -~ [ is an output

mapping of S. S is frequently a copy of a FA which

generates Lf [2]. Clearly, S realizes f if for each

weLs, ¢( & M(w),x0)) = f(M(w)).

When a desired closed loop behavior is given in
the form of a language LCL(G), a typical supervisor
synthesis problem can be posed as follows: given L,
design f {or S) such that Lf = L,
impossible to realize L exactly, i.e., to have f with
Ly = L.

maximal realizable language Lmax such that Lmax C L

Frequently, it is

In this case, we are forced to find a

(For more detailed discussion on this point, see
[5]1). The necessary and sufficient conditions for
the existance of f for which Lf = L are the
followings [2], [3]):

(a) L is (Xu,L(G))-invariant: i.e., LETuNL(G) < L

(b) L is (M, Xc,L(G))-controllable: i.e.,
s,t€L, o€ Zc, so €L, tog€L(G), M(s)=M(t)=>toEL

Effective methods of computing (Xu,L(G))-invariance
and (M, X¢,L(G))-controllablity for a given L can be

found in [6] and [7], respectively. When a language

satisfies the above conditions, a supervisor S can be
constructed in a systematic way ([2], [3]) to realize

the language.

3. Observation Function Design

3.1. Observation Function Design Problem

1f we are given a closed language LCL(G) and

required to realize it, and if there is no

restriction in choosing the observation function, the
first step we take is frequently to extract a largest
of L which is (Xy,L(G))-invariant : this

is because only (Xy,L(G))-invariant languages can be

subset L°

realized by supervisory control described in Section
2 regardless of what mapping is employed for the
observation stage, and because a larger language
represents the more jobs which the DEDS can perform.
Once the largest sublanguage L° is obtained, it can
be readily realized by using the identity mapping as

an observation function: recalling the necessary and
sufficient conditions in Section 2 for the existence

of a supervisor, we can easily see that the identity
mapping always satisfies the condition (b). An
interesting fact, however, is that there might be
many different observation functions M for which the
is (M, Z¢,L(G))-controllable. This fact
has been already illustrated by an example in [5].

language L~

When many observation functions satisfying the
condition (b) are available, we naturally seek for a
"coarsest” observation function which represents the
transmission of minimal amount of information. The
minimal amount of information here will in fact

correspond to a minimum number of sensors or



communication lines, or some combination of both.
Thus we consider the following observation function

design problem (OFDP).

(OFDP) Given a closed (Xu,L(G))-invariant language
LCL(G), design an observation function M as coarsest
as possible while it makes L (M, X¢,L(G))-
controllable.

To make it clear what we mean by coarser
observation functions, we introduce a partial

ordering on a set of mappings in the next subsection.

3.2, Sets of mappings E and Ec

Recall that an observation function is a mapping
M: Z—A U{¢}, where A is a set of output symbols.
In what follows, all mappings have the same domain X
and take values from the fixed set A U{&} unless
otherwise specified. An element in M-1(g) thus
represents an event which cannot be seen by the
supervisor. Also, if M(o)=M{ o ), then the
supervisor cannot distinguish between events ¢ and

o’ When we consider the set of all such mappings,
denoted by EM,

following equivalence relation.

it is wuseful to introduce the

Two Mappings M; and Mz are said to be

equivalent, written My =Mz, if (i) M I(e)=M1(e)=A
and (ii) for all o1,02 €X-A, M (o1)=Mi(0o2)
iff Melopl= Maloz).

The set M~!{¢£)} is sometimes said to be the null set

of the mapping M. The condition (ii} above can be

rephased as follows: i.e., X-A has the same
partition or the same equivalence relation induced by
these mappings. Thus if M; and M2 are equivalent,

they convey exactly the same amount of information to

the supervisor, Therefore we do not need to

distinguish equivalent mappings between them. In
the E of all

For convenience

this context, we consider set

equivalence classes of EM under

in the later development, however, we consider E as
the set of all mappings each of which is the
representative of an equivalence class of EM, Thus
if My and M2 are in E, then they are not equivalent.
We include the identity mapping in E, which is the
representative of all one-to-one mappings from X
into A.

Now we are ready tc introduce a partial ordering

on the set E. Define a relation < on E as follows:

My < Mz if
(i) Ai1<A2, and
(ii) for all o), 02€X-Az2,
Milor)=Mi(o2) = M2(o)=M2(02),
where A and A2 are the null sets of M; and Mz,
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respectively, It can be easily verified that the
relation < is a partial ordering. Thus (E, <) is a
partially ordered set. In fact, we have
Proposotion 1: The partially ordered set (E. <) is
a complete lattice.

Note that the smallest element in E is the

identity mapping and the largest element the mapping
which has X as

of the partial ordering < is sel f-explanatory in its

its null set. The physical mean:ing

definition: for example, the larger the null set of a

mapping is, the smaller number of sensors we need to
install to observe the occurrence of events in the
system. Also, when M; and M2 have the same nuil set,
the relationship M < Mz might imply that the

number of transmission channels for Mz required for

feeding the corresponding information to the
supervisor is not greater than that for M;.

¥hen we are given a closed language LCL(G), not
all  members of E satisfy the (M, £¢.L(G))-

controllability condition. We thus need to restrict
ourselves to a smaller set Ec

(M, ¢,

C E of mappings M for

whigh L is L{G))-controllable. Then FEec
with the partial odering < inherited from (E, <)
becomes another partially ordered set. Now, the
problem (OFDP) can be rephased as follows: find a
mapping in Ec which is as large as possible. It is
clear that the partially ordered set (Ec, <) has a
maximal element, since E¢ has a finite number of
elewents in it. But, is there a largest element in
(Ec, £) 7 The following example illustrates that
(Ec, £) is not a lattice and does not possess a

largest element in general.

Example | Let Z=3%c={a,b.c}, L(G)= abla+c)*, L =
abc™ (these expressions for the languages L(G) and L

are called regular expressions [8]. The upper bar

denotes the prefix-closure [2], [5]). Fig.2. displays
the FA's G and Gs, where L(Gs) = L.
G Gs
b
0251 252 ac er 025y Boy c
Fig.2. The FA's G and Gs ( L(Gs) = L )

Consider two mappings M; and M2 defined as follows:

&,
5.

My :
Mz

M1 (b) =
Mi(a) =

Mi(e) = €,
Mz (c) = ¢,

M1
M2

= Mi(a) =
= Mz2(b) =

in [71,
L{G))-controllable
In other words, M

My and M2

Using the computation method we can easily
that L (M, e,
L(G))-controllable.
Ec

in Ec).

verify is and
(M2, 2,
M2

distinct elements

and

belong to the set (Clearly, are



¥e now check if M) or Mz has an upper bound in

and Mgz,

immediately see that the only possible candidate for

Ec. Glancing at the definition of M we

an upper bound of M or Mz, excluding M1 or Mz
itself, is the mapping M with the null set 2, i.e.,
M(a)=M{b)=M(c)=¢. [t turns out, however, that L is

not

t=ab,

(M, Z¢,L(G))-controllable (try the strings s=g£,

c=a to see if the (M, ¢ L(G))-controllablity
Thus M|
does not have an upper bound other than themselves.
{M, M2}
(Ec, £) for
this problem is not a lattice and does not possess a

and M2

condition for this M is satisfied). or Mgz

Therefore there is no upper bound of the set

either: hence the partially odered set

largest element. Note that M are in fact

maximal elements in (E¢, <), (end of example)

The absence of a largest element forces us to

consider the maximal elements of Ec as alternative

solutions. However, it is not clear at this point

what procedure would compute maximal elements of Ec.
we restrict our attention to a
of 3.

methods of obtaining a coaser projection

In the next section,

subset of Ec¢ which consists of projections

Twoe natural

will be presented. Before leaving the section, we

note that if we impose a stricter condition, namely

(M, LIG)) -recognizability [3], [7], instead of (M, T,

L.L{G))-controllability for the membership of Ec, the
algebraic property of the set does not improve: i.e.,
it is still not a lattice and docs not have a largest
element.

4. Methods of Computing Coarscer Projections

4.1. Projections of X
Consider the mappings P: £ -—X U{e}l deifned in
such a way that for some ACZX, Plol=¢ if o€A

and P{o)=0 otherwise. Such mappings are called
will be called

In this section,

projections of ¥. Again, the set A
the null set of the projection P,

we will only consider projections of X,

Let EP denote the set of all projections of .
The set EP can be put into one-to-one correspondence
with the power set P(X). In fact,
ordered sets (EP, <) and (P(X), C} are
we have that Py <Py iff A1 CA2.

sets of Py

two partially
isomorphic:
indeed, where Al

and A3z are the null and Pz, respectively.
(EP, £)

the

that is a

EPec

is

Therefore we can immediately see

lattice. Now consider
consisting of

(P, Z¢,L(G))-controllabie.

set
which L

same

complete
projections P for
The

and M2

example in

Section 3 (the mappings M; in the example are

with null {a,c}
(EPc, <)

fargest element

equivalent to the projections sets
and {b,c},
element and does not have a

EPc

respectively) shows that has a

maximal

in general. However, the set has a better
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algebraic property, which we show in the following.

be projections with P’ <P,
(s)=P" (t) = P(s)=P(t).

Lemma 1 Let P and P’
Then for all s,tex*, P’

Proof: We use induction on the length of the string
P" (s). Let A and A’ be the null sets of P and
P’ respectively. If P’ (s)=¢, then P’ (s)=P" (t)

Since A~ CA,
Suppose now that P’ (s)=

implies that s,te A" . we have s, t

e A so that P(s)=P(t)=¢.

o102 .OnCn+1 =P (t). Let x and y be the
largest prefixes of s and t, respectively, such that
P’ (x)= 0102 .on =P° (y). Then s=x0On+1u and

t=y gne1 v for some u, ¥ & X* with P’ (u)=¢=P’ (v).

By the induction hypothesis., we have that P(x)=P(y)
and P(u)=P(vr ). Therefore P(s)= P(x)P{on+1)P(u) =
P(y)P{ on+1)P( v )=P(t). Q.E.D.
Proposition 2 If P€EPc and if P° <P, then P° &
EPc.
Proof: Suppose that s, t&L, o€ Xc, sCEL toe
L(G) and P~ (s)=P" (t). By Lemma 1, P(s)}=P(t).
Since PE€EPe, L is (P, Xc,L(G))-controllable.  Thus
toel, which implies that L is (P", X, LIG))-
controllable. Therefore P" €EPc. Q.E.D.
The conclusion in Propesition 2 is intuitively

when P~

more events with P’ .

< P,

Thus the supervisor

rather obvious: the supervisor observes
in this
case should be able to realize the given language
The

is replace by

with P, above

when EPc

whenever this is possible

however, fails

difficulty

conclusion,
Ec:

arises when the null

some in ensuring the conclusion

sets of mappings in Ec do not

coincide.

4.2. Methods of Obtaining A Projection

we present two natural
in EPc which

coarser than the identity mapping.

In this subsection, ways

of obtaining a projection is, in many

cases,

lLet G be a FA for a DEDS and let the language LC

L(G) be (Xu,L(G))-invariant. If the observation
function is the identity mapping, there exists a
supervisor that realizes L. Ve denote this
supervisor by S = (S,¢), where S=(X, X, &.x0)}. Now
let X¢r be the set of events that cause state
transitions into states different from previously

occupied states: i.e.,

Ser = {g: £(0.x)=y for some x,yEX with x=*y}.

Thus at the same state and

maintains the same control
in X-Xtr.

believe that the supervisor can do the job without

the supervisor stays

pattern when it observes

events Therefore it is reasonable to

observing the events in 2-Z:r. Indeed, we have



Let P be a projection with the null
Then L is (P, Xc,L(G

set A :E~Exr.

J)-controllable.

Proof Let s,t€L and P(s)=P(t) Since s,t€L,
£ (s, xo) and £(t,xo) are defined. Moreover, P(s)=
P(t) implies that & (s,xo)=&(t,x0): this can be

ecasily seen by recalling the definitions of P and
Ztr.
Again,

Now suppose that o€ X, so &L and to €L(G).

recalling the definition of the closed loop
language and the supervisor realization, we see that
soc &L implies o€¢{ & (s, x0)). Thus ce¢( & (t,x0))

(since &£ (s,x0)=& (t,x0)), which in turn implies that

t 0 €L. Hence we have shown that L is (P, E¢,L{G))-
controllable. Q.E.D.

The above method of obtaining a projection is
easy and straightforward. It is, however, heavily

dependent upon the structure of the supervisor which

we started with. Since there are many supervisors S

which realize the same mapping f, it become very

important in this method what kind of supervisor § is
to be used when computing Xir: for example, if the
supervisor is more “lumped”, it is more likely to

come up ¥ith a coarser projection. In the following,

we present a refinement of the above method which

does not show such degree of structural dependency.

Two states x and y in X are said to be
if for all s&EX*,

whenever both & (s,x)

written

O

control-eguivalent, XKy,

P E(s,x)) = ¢(E(s,¥y}))

£ (s,y) are defined.

and

It is an equivalence

&(s.y)

Remark is easy to see that —~

relation on X. Also, if x~y , then & (s,x)~

whenever they are defined.

Now let

Teo = {0 5(0’,)()

=y for some x.yEN with x~y}.

Define a projection Pce by letting its null set to be

T-Xce.

Lemma 2 If Pcels) = Pee(t) for s,t&L, then £ (s,xo0)

~ & (t,xo0)

If
then xo~ & (s,xo) and xo~& (t,xo0).
E(s,x0) ~

. OnOn+i

_____ We use induction on the length of Pcels).
Peels)=€=Pco(t),
By transitivity of equivalence relations,
£(t,x0).
=Peo(t).

Now suppose that Pcel(s)=o1 02
Let s; and t1 be the largest prefixes of s
On

and t, such that Pce(si)=oi1 0z ...

= Peelt1).
PcolU)=e=Pce (V).

respectively,
Then s=s| On+«1U and t=ti On«1¥ where
x= & (

By the induction hypothesis,

and y= & (t1,x0).
E(ons1.x)

Definition 2).

Let . x0)

x~y. Thus
(see the Remark after

E(u, E(onsi1,x))
Eloanv.y)

~&(dn+1.y)
Pce(U) = £

E( ol x).

Moreover, implies that

(=& (onru, %))~

Similarly.
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~&(On1,Y). Hence £ (cns1u,x)~&(Cneyv,y).
But &(dn1u,x)=E(on1u, §(s1,xc))=
£(t,x0).

)~ & (t,x0).

£ (s1 On-1U,%0)
Elonav,y)= Thus

Q.E.D.

=& (s,x0) Similarly,

we have established that & (s, xe

L is {Pce, £c,L{G))-controllable.

Proposi

Proof Let s,t€L and Pcels)=Pcelt).
2, ¢(&(s, x0))=p( & (¢,
identical to that of Proposition 3.

Then, by Lemma
The rest of the proof is

Q.E.D.

x0)

In the following, we demonstrates the use of the

above results through an exanmple.

Example 2 Consider two FA's G and Gs in Fig.3. Let
G:
“’/’ NG
“> 0 2
\‘32 %,ﬂ
oy 3/09
Gs:
B B2
| —— > 9 < 5
ay a2 A1 / Az
€« 0 € 3 ———> 1
B2 o
Fig.3. The FA's G and Gs

Then L € L(G) and

Fig. 4.

L(Gs)= L and let 2c¢ = {a1, a2}.

L is (Xy,L{G))-invariant. displays a

supervisor § = (S,¢) which realizes L when the

identity mapping is used as the observation function.

S: B2 $:

A/Bl B2

x| ————— > xXp € ————— X3 7L, i=0,1.3,4
’T Plxi)=
ra2. i=2,5,
-3 a2 B

ryi=tai., B1. B2}
Xp € X3 X resfaz, B1. B2}

B2 a1

Fig.4. Supervisor S = (5.¢)

Now it is easy to verify that the subsets {xz2.%x5}
and {x0.x1,x3.x4} of ¥ are two equivalence classes of
taz, B1).
is coarser than the
[51,

Therefore Xce = Thus we
which

indicated

X under ~.
obtain a projection Pce

jdentity mapping As in there is



another supervisor S’ =(S° ,¢° ) where S° is struc-

turally much simpler than S. Fig.5. displays §° .

S’ B
o, /\
B2 X0 XQ B2
a2

¢ (xo)={ai1, B1, B2}, ¢ (x)={az. B1, B2}

Fig.5. Supervisor §°

Xer={az, B1}.
using the first method (Proposition 3},
It should be,

noted that the first method applied to
the

Note that for this supervisor §° ,
Thus,

the same projection as before.

we get
however,
S results in
identity mapping: on the other hand, the second
method applied to S° yields the same Pco. as before.
In this respect, we also note that it is quite

"reduces” a
of

this procedure would

possible to devise a procedure which
by

for example,

supervisor using the concept control-

equivalence: in
fact reduces the supervisor S to S’

{end of example)

As suggested in the above example, the problem of

obtaining a coarser projection is closely related to

that of supervisor reduction [9). In this context,

it is worth noting that we could define the output

mapping ¢ differently with which the supervisor S

still be able to realize L: this is because at some

state x, the inclusion/exclusion of certain events
into/from ¢(x) does not make any difference in the
closed loop language of the system. However,

different output mappings yield different partitions
of X (induced by ~),

different projections Pce.

and therefore could result in

The extra freedom in
choosing ¢ described above has played a key role in
the development of a supervisor reduction method in

[9].

" "
covers

It is thought at this stage that the concept of
[9]

another procedure for obtaining a coaser projection:

in could enable us to develop vyet
the projection obtained in this way is expected to be
coarser than that obtained by the second method in
of

generalization of the notion of control-equivalent

this paper, since the concept cover is a

classes.

5.  Concluding Remarks

In this paper, the problem of designing an

observation function has been discussed. A partial
ordering < on the set of observation functions has
to compare the amounts of

by

been introduced in order

information conveyed various observation
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(Ec, <)

functions

functions. The partially ordered set
(EPc, <) of

which the given language can be realized turns out

or

consisting observation for

not to possess a largest element, As a first step

towards getting a maximal observation fuction, two

natural methods of obtaining a projection have been
Maximality of solutions in

presented in Section 4.

these methods has not been investigated.

There are some remaining problems: as discussed

in Section 4, it would be interesting to see how the

(maximal)

problem of obtaining a projection is
related to that of achieving a (optimal) supervisor
reduction studied in [9]. It will be also worth

trying to characterize a maximal projection by using

[2].

in Section 4 to the case of

an "efficient” supervisor in Some form of

extensien of the results

general mappings is again remaining to be seen,

References

[1] Y.C. Ho, Ed., "Special Issue on Dynamics of Dis-
crete Event Systems”, Proc.lEEE, V77, No.l, 1989

[2] P.J. Ramadge, W.M. Wonham, “Supervisory Control
of a Class of Discrete Event Process”, SI1AM J,
Contr. Optimz., V25, pp 206-230, 1987

[3] R.Cieslak, C.Desclaux, A. Fawaz, and P. Varaiya,

"Supervisory Control of Discrete Event Processes

with Partial Observations”, IEEE Trans. AC-33,
pp 249-260, 1988

[4] P.J. Ramadge and W.M. Wonham, “The Control of
Discrete Event Systems”, Proc. IEEE, V77, No.l,
pp 81-98, 1989

[5] H. Cho, "Supervisory Control of Discrete Event
Dynamical Systems”, 1989

[6] W.M. Wonham, P.J. Ramadge, "On the Supremal Con-
trollable Sublanguage of a Given Language”,
SIAM J. Contr. Optimiz. V25,No.3, pp637-659, 1987

[7) H. Cho, S.1. Marcus, "Supremal and Maximal Sub-
languages Arising in Supervisor Synthesis
Problems with Partial Observations”, Math.
Systems Theory, V22, pp 177-211, 1989

[8} J.E. Hoperoft, J.D. Ullman, “Introduction to
Theory, Language, and Computation”, Addison-
Wesley, 1979

[9] A.F.Vaz, W.M. Wonham, "On Supervisor Reduction in
Discrete-Event Systems”, Int. J. Control, V44, pp
475-491, 1986



