Learning control of a robot manipulator using neural networks

신경 회로망을 사용한 로보트 매니퓰레이터의 학습 제어

  • 경계현 (서울대학교 대학원 제어계측공학과 로보틱스 및 지능시스템연구실) ;
  • 고명삼 (서울대학교 대학원 제어계측공학과 로보틱스 및 지능시스템연구실) ;
  • 이범희 (서울대학교 대학원 제어계측공학과 로보틱스 및 지능시스템연구실)
  • Published : 1990.10.01

Abstract

Learning control of a robot manipulator is proposed using the backpropagation neural network. The learning controller is composed of both a linear feedback controller and a neural network-based feedforward controller. The stability analysis of the learning controller is presented. Three energy functions are selected in teaching the neural network controller : 1/2.SIGMA.vertical bar torque error vertical bar $^{2}$, 1/2.SIGMA..alpha. vertical bar position error vertical bar $^{2}$ + .betha. vertical bar velocity error vertical bar $^{2}$ + .gamma. vertical bar acceleration error vertical bar $^{2}$ and learning methods are presented. Simulation results show that the learning controller which is learned to minimize the third energy function performs better than the others in tracking problems. Some properties of the learning controller are discussed with simulation results.

Keywords