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PROBLEMS OF A SPEED.CONTROLLED DRIVE SYSTEM WITH B’ CKLASH
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ABSTRACT In a speed.controlled system with
cascade control which shows an optimal per.
formance in the linmear case,limit cycles
can occur due to backlash, The various eff.
ects observed can be explained uith the aid
of the describing function. With a first.
order lpad torque observer these limit cy-
cles can be avoided. Moreover the dymamic
performance improves considerably and the
range of appliecation of cascade comtrel is
sxtended.

INTRODUCTICN

In this paper an elastic two-mass system with
backlash is investigated to find out the reasons
for limit cycles. Based upon this knowledge, a
first-order load observer is proposed,as a simp-
le measure, to improve cascade speed and posi-
tion control. The results found by simulation
were verified with an experimental setup with
adjustable electrical and mechanical parameters.

The aims of publications dealing with backlash
depend very much on the field of application.
For the work presented here /1/-/3/ were impor-
tant contributions. The investigations which
have been carried out and are continued are in-
tended to lead to fundamental knowledge and new
control concepts more than to a special solu-
tion.

MODELLING

A system as shown in Fig.1 is investigated,
consisting of two rotating masses {inertias 8
and 8,) which are coupled via the backlash 2d£12
as a "nonlinear element, and via the linear
torsion spring with the stiffness Cyge This
spring represents the elasticity of'“a shaft, a
gear etc. The inner friction of the elastic ma-
terial is described by the linear damping d
in parallel to the spring. Mass 1 is driven}%y
a current-controlled dc or ac motor. A speed
control loop and, in appropriate cases, a posi-
tion control loop are superimposed to the cur-
rent contrel leoop {cascade structure). It is
assumed that the variable to be controlled op~-
timally is the speed n, of tl. lead mass, but
that only the motor quintities current i, and
speed n, (and possibly o} can be measured. A
constané torque mo is assumed acting on the
load mass.
The transfer functions n1/m and n2/m of the
controlled system {without éurrent ca&trolk
show a third order denominator which consists
of an integral term and a second order lag.
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Accordin? to industrial conditions the damping
factor d;, in Equ, (&) is assumed to be very
small. Tﬁgn the two poles in Equs. (1) and .{2)
are conjugate complex.

Normally a PI speed controller is used and is
optimized according to the Symmetrical Optimum
{$0) which, however, applies in the case of
real poles only. But if the condition.ﬂ.o12210.ﬂa
holds, a transient performance as in )
Fig.2 results. Uy »1/(2T, ) is the intersec-
tion angular freqlency of the open speed con-
trol loop, with T 0~ Tei*Tan? standard values of
the simulation are Te =5ms ,T. _=2,7ms,
f.=64,65s~1). While the step résponse of n, and
Ny Fig.2., in its shape follows the SO standard
résponse {the reference step not being smoothed)
small oscillations of the two masses against
each other occur. They originate from the weak-
ly damped complex poles which cannot be influen-
ced by a simple PI speed controller

With decreasing values JLC 2= 1 the perfor-
mance of n, is deteriorateé. In the case of
S =0,1Jf only n, follaws the 50, but n, wiil

os%lilate, weakly damped. Then the systen %orks
like a one-mass oscillator with impressed speed
n,, oscillating at JL_,, Equ.{5). Only by means
o% a complete state feg&dback control all poles
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could be shifted in such a way that opti?aé
damping and time response of the controlle
load speed n, is achieved.

DESCRIBING FUNCTION

If the reference value n,, in Fig.1 is con-
stant, n, =n, *0 »n? a constant load torgue

My =m, 40 3cts¥Sn the mass m + the system will
o%vioﬁsly be able to run at“constant speed nye=
BOTRETTE The question is, if this point of
operatlon is asymptotically stable and which
effects occur in no~load condition m2=0.

- Because of the high order of the system only a
numerical treatment is possible in the time do-
main. Puzzling phenomena are obsexved in the
case of step functions of n w?.on the one hand
the system comes to a new s%eadyvstate opera«-
tion, on the other hand several stable limit
cycles are possible. If, for example, m, is re-
latively low, a stable "big" limit cyclé
(Fig.3a) or a stable "small” limit cycle
{Fig.3b) can develop. If m, is relatively high,
no limit cycle occurs. Undér certain conditions=
only one limit cycle is observed.

To understand these phenomena, it is helpful to
realize that the nonlinearity acts like a switch
which changes the structure of the system do-
pendently on its input magnitude, If /w -,/ be-
comes <%y ., the load mass is detached frofm the
motor shit# and not longer controllable. If

/o, -,/ becomes 2%y 407 motor and load mass get
‘connected agaln. Susgained periodic oscillation,
i.e. stable limit cycles, seem to be possible,

L£ such impacts occur at suitable time intervals.

The harmonic balance using the describing func-
tion of the backlash characteristic leads to a
deeper understanding. The describing function
is defined as N,=x,,/x 4881/2 Yexp(jm), if

X=R exp(jﬂtt) s thg harmogic input quantity
o% t%e nonlinear characteristic and xA,=kAtexp\
j(mgt¢q))is the first harmonic of the .
Fourier expansion of its output guantity.

If m, is kept constant, my=my g =const 0
stea%y-stute condition My oomyyn=Mayn ﬁoldl. The
torgue m,, causes torsion’of %Re spring. In this
way a stéady-state operating point is fixed on
the backlash characteristic (Fig,4), producing
non-symmetrical operating. The harmonic exita-
tion of x, requires a definite mean value %o
{Fig.4. ) 7in such a way that always Xpo™Mag
holds. A mean value §_=x, =m, of the descri-
bing function results® ~ho 720

With the aid of the describing function the: non-
linear backlash characteristic can be replaced
through a linear gain V,,=N.. As vy is =1, the
spring €1, Seemingly beégme; "softeg", the damp-
ing d‘2 becomes smaller. This harmonic linea-
rizatlon of the nonlinear element as means of
testing stability requires the linear system to
be a low-pass. This assumption is allowed, as
will be proved by the results shown later on.

The stability of the nonlinear system can be in-
vestigated by analyzing the stability of the
1linearized system.
‘The pole configuration of Fig.6a reveals that a
pair of conjugate complex and weakly damped
poles is responsible for the instability. In
the case of v12=1 only small oscillations occur,
as seen in Flg.2, which will decay. But with
Sec::asigghgaénlg these poles are shifted in-
o e rig alf “plane (Fig. 6}, caus
building-up oscillation. éﬁé otE;; po?e;ngfathe

system are not being influenced consi
theough V12. considerably

In the nonlinear system, which is in steady-
state operation, a sufficiently high disturbance
induces "automatic” shifting of the wegakly damp~
ed pair of poles into the right half plane It
depends on the amount of the load torque, 1£ a
stable limit cycle will occur or not. !

This can be seen from Fig.4,2a, The crossin
g.4.2a, E
of the curves of the describing function ang
the stability margins represent possible limit
cycles. The number of crossings depends on the

in

‘Parameter N_/a, i.e. the per unit load torqué

o
Myg/™y 12 of the system.
In the case of a very small lecad, N_/a=0,01 for

" example, four ‘crossings 1-4 exist ih Fig.4.2a.

To test the stability of these points, small
deviations are assumed which lead to the arrow-
head directions according tc decreasing or in-
creasing amplitudes of oscillation. The result
is that only the points 2 and 3 describe stable
limit cycles. .

The following table can be derived, taking the

minimum of the describing function MIN(N,)=MIN
as criterion of the load: -

Load
case MIN(N1) Limit cycles
1 MIN = 0 1 stable
0 < MIN< VIZL 2 stable
MIN = V 1 stable and
3 ~ Y12L {1 semistable
4 v < MIN <V 1 stable
5 . 2L MIN = V}iﬁ 1 semistable
6 MIN > v12H no limit cycle

In the case of no-load operation m,,=0 {(case 1)
only one stable limit cycle can oc8ur. In the
case of a relatively low load (case 2) either
a "small" limit cycle {point 3 in Fig.4.2) or a
“big” limit cycle {point 2} happens, depending
on the magnitude of disturbance. This is the
interpretation of the simulation results of
Fig.3. In the case of a sufficiently high load
(case 6) mZOI“L12>”1'° the system shows total
asymptotic stability of rest at each va-
lue nygen,g®R i q- No limit cycle can occur.

These cases have been verified also experimen-
tally with a speed controlled dc-machine and an
elastically coupled load with adjustable values
of backlash, elasticity and mass ratio.

This knowledge of the conditions of stability

leads to various measures to avoid limit cycles,

f.e.:

{1) Design of a speed control with robustness
against variation of V12.

(2) Use of a filter which flattens the reso-
nance peaks in the region of instability

{3) Compensation of the feedback of mys

Measure {3) has been elaborated and applied
successfully. Obviously the reaction of the
weakly aamped oscillator on the speed control
loop via the shaft torgue m is the reason of
limit cycles. Due to the feé%back of m the
resonance peaks appear in the Bode diagfam, cor-
responding to the pair of poles which cannot be
damped sufficiently with a simple cascade con-
trol. If m was compensated completely through -
a counteraéginq torque of equal magnitude, the
motor would be entirely decoupled from the re-
acting oscillator, and no resonance peaks could
appear. But doing so, the damping of the oscil-
lator could no longer be influenced through the
speed control. Then the performance of the load
speed n, would be highly unsatisfactory because
of the Weak damping d!,. For this reason only

a partial compensation”of mis is successful.

This is done through a lead torque cherver shown
in Fig.1 . The torque m., is being reconstruc-~
ted from the measured motof current i =m, and
the differentiated speed dn,/dt, qivi&g ;A 2°
This is fed to the current éontrol loop vi; the
gain K as an additional reference value. The
observer may be realized also as a first-order
Luenberger observer, being a network with inte-
grator as shown in Fig.1 . It is important to
emphasize that this "integral observer" is com-
pletely equivalent to the “"differential obser-
ver”. As the observer time constant T, normally
is kept as low as possible (for examp?e TB=1msl,
and: as To=T_../ky holds, k, becomes correspon-
dingly highl So the ampli?ication of harmonics
of the measured speed n, is equal with both
networks.
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1L is & state variable, m,,, which is reconstrucs
ted by the observer and £d4 back to the system
via the factor K. Transforming the PI speed con-
troller into a state variable structure, a sy~
stem with incomplete state variable feed back:
is received., Not all poles can be assigned ar-
bitrarily by this method, but they can be in-:
fluenced favourably. Assuming T,=0 the Damping
Optimum easily applies. Only two of the four
double ratios of the approximated denominator!
palynomial, and the equivalent time constant of
the closed-loop system can be predetermined. As-
suming the values (in brackets) of Equs. (4)~(10)
systems with characteristic frequencies in the
range of 25 Hz< Foya <100 Hz show limit cycles.
Cbserver patametet; K~ 0,3, T.%1 ms were found
by simulation and experiment “which prevent
these limit cycles and provide a good dynamic
performance in the range of T /Te =0,1..1...10.
Though systems with F < 25 ﬁ% afe not able to
limit cycling, their dynamics 1mproves,1£ the
observer is applied. Very "soft" systems, how~
ever, become slow. Complete state variable feed
back is advisable then.

Linear system.In the case of a step function of
the refexence value n, , the settling time of
n.,-is reduced by fact&¥ % 0,8 through the obser~
v&ér. In the case of a step function of the loagd
torque n, the settling time of n, is reduced by
factors(0,75, the maximum overshogt by factor =
6,6. Fig.7 shows experimental results,

System with backlash. When the system is "sof-
tened” by the backlash (decreasing gain V, .},
the observer flattens the resonance peaks, keep-
ing them below the 0 db-margin {dashed curves

in Fig.5). The weakly damped pair ot poles re-
mains in the left half complex plane now
{Fig.6b)}. The system becomes asymptoticly stable

at each stationary operating point n20=n10=n?wo
through the observer. The transient behaviour
is quite similar to Fig.7b shows, but

n, is not controllable within the dead band.

CONCLUSIONS

The stability of a speed-control :
mass. system with backlash has beigdiﬁizzztgazzg_
with the describing function. Reasons and con-
ditions for the existence of stable limit cyc-
les were found. Based on this knowledge a f{rst-
order load torque observer is proposed. By this
simple measure limit aycles are avoided, the
dynamic performance of the system is iméroved
and the cascade control can be applied, to a

certain extent, also to "soft" mechanical systems
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Pig. 6 Experimental results with the linear system
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