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Surface Wave Analysis in Modal and Ray Solutions
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Abstract

When an electric (or a magnetic) line source is located
near the surface, surface wave type field is generated and
the energy associated with this field is guided very close
to the impedance surface. In this paper, field strength is
calculated by the exact modal and ray methods for a line
source excited parallel plate waveguide. The surface wave
contribution to the modal and ray solutions is anticipated
very strong and must be included in both solutions.

1. Fornmlation of the problem

The problem of a line source excited two dimensional
(2-D) parallel plate waveguide of infinite extent with
impedance walls is analyzed in this section. The 2-D time
harmonic wave equation for the parallel plate Green’s
function G due to a line source at z = z’' and z = 2’ in
the waveguide geometry of Figure 1 is given by

2 2
;?+5'3z—z+k’]c=—6(z—z')6(z—z') (1)

where k is the free-space wavenumber and §(z) is the
Dirac delta function. In this 2-D problem, the EM fields
can be simply related to the Green’s function G because
one can scalarize the problem separating it into the T'E,
and TM, cases. One notes that the magnetic field has
only a ¥ component for the TE, case and likewise, the
electric field has only a ¥ component for the TM, case.
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Figure 1: Infinitely long (in &) parallel plate waveguide
excited by an interior line source.

Thus, let H = §H, represent the magnetic field in the
TE, case; likewise let E = §E, represent the electric
field in the TM, case. The excitation in the TE, case
can be a magnetic line source of strength M at (2, 2');
likewise, an electric line source of strength I at (z',2')
generates the 7M, fields. These line sources are of infinite
extent in the § direction. It can be shown that Hy =
—jkYMG and E, = —jkZIG where Z (or Y) is the free-
space impedance (or admittance), provided G satisfies
the following boundary conditions:

a—G-:tjkG =0 as |z| — oo (2)
dz
a-ﬁ-—jkgG = 0 atz=0 (3)
9z
E-*—jkg,,c =0 atz=a (4)
dz
where
)z, for TEy case ®)
Slu = Yiu for TM, case

and Z;, (or Y;,) is the surface impedance (or admit-
tance) at z = 0 and z = & which is normalized to the
free-space wave impedance {or admittance).

Using the above boundary conditions, one can obtain
G(z,2'; 2,2') by solving Equation (1) as following: [1]

¢ = L / (¢ 7< + Remit <)

275 Je, 2k. (1 - RiRu)

. (e-il- £ 4 Rueik’ 2>) . e Ik js—s'| dk, (6)
where 2. and z, denote the values of z which satisfy z <
7' and z > 7', respectively. An evaluation of the above
integral via the residue theorem yields a representation
for G in terms of a summation of the conventional guided
modes propagating along the z direction; namely: [1]

X 1 (eikx,. z< 4 Rie_jk"' =<)
G = ) 2k, 3(RR,)

n=0 3k,
(e ik => 4 Ryeikan 7>) . gmikem il (7
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where
ke ~ kfl
R k: + kg (®)
kz — k¢u _jar.a
= —— ol 9
Be = vk ®)

It is noted that the modes arise from the residues of
the poles in the integrand. The zeros of the denomina-
tor of the integrand in Equation (6) yields the required
poles. Also these zeros yield the eigenvalues of the modes.
Specifically, these eigenvalues are obtained by solving the
transcendental equation 1 — RjR, = 0 in the integrand of
Equation (6) via a numerical ‘ Newton-Raphson’ iteration
method.

An alternative ray expansion representation for G is
obtained by expanding the resonant denominator of the
integral in Equation (8) into a geometric series [2],

1 °° .
1-RE = "22‘3 (RiR,) (10)

Then, the Green’s function G(z,2'; z,7') is expressed in
the complex a plane as

. oo
J ik az —ik
G = ____/ kcosaze jkcosazc
i Jo "go( + Rie )
. (e—jbco-az> +R“e1'keo-at>)
. e—jtlinall—--'| (R(Ru)” da (ll)
where
_ cosa—g
R = cosax+ g (12)
. 08~ (u —jikacosa
R, = csate e (13)

After interchanging the orders of summation and in-
tegration, each of the integrals in the sum is evaluated
asymptotically for large kv/(z — z')* + (z — #')? term by
term via the method of steepest descent to arrive at the
ray expansion [1,3].

2. Surface waves analysis

In the modal expression for the configuration in Fig-
ure 1, there are two surface wave type modes in addi-
tion to the usual waveguide type modes which are excited
if the impedance is inductively (or capacitively) reactive
when the excitation is due to a magnetic (or an electric)
line source within the waveguide [4,5,6,7]. The surface
wave modes can be included in the modal solution by
simply evaluating the integral in Equation (6) via the
residue theorem for the surface wave poles as done for
the other ordinary modes. The distinction between the
surface wave poles from the other ordinary poles is that
the real part of k, of the surface wave pole is greater than
ka.

Figure 2 shows an effect of the surface wave contri-
bution to the field strength at an observation point in
the modal solution. Despite the inclusion of the surface
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wave effect, the agreement between the exact modal and
the approximate ray solution is not so good in Figure
2, unless the distance from the source to the obeerver is
sufficiently large. It was found that the reason for this
discrepancy between the two solutions could be traced to
the need for an increased accuracy in the asymptotic ap-
proximation of the ray solution near the surface when the
observation point lies within the surface wave “transstion
region” where the surface wave is not fully established.
This “transition region” extends over a certain distance
from the source depending on the value of the impedance;
e.g., it becomes larger for the magnetic line source exci-
tation of an inductively reactive impedance boundary as
the inductive reactance becomes smaller. This transition
region may be viewed as a “launching® or “peel out” dis-
tance required to establish the surface wave.
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Figure 2: Magnitude of G for the case that the surface
waves are included in both solutions but the surface tran-
sition function is not included in the ray solution.

A uniform asymptotic treatment of the integral repre-
sentation of the waveguide Green’s function which yields
the ray expansion provides a simple transition function
correction to the surface ray solution in terms of a Fres-
nel integral. The ordinary ray series solution including
the surface wave (or ray) contribution results from a
non-uniform asymptotic treatment of the integral for the
waveguide Green’s function; this ordinary ray solution is
accurate only outside the surface wave transition region.
Mathematically, the observation point lies within the sur-
face wave transition region when the surface wave pole
ap is close to the saddle point a, as shown in Figure 3.

Consider the integral given by

I(kr) = /; . F@) ) g (14)

a - Qp



A48 =Fg F oA

et Ey (89.2.11)

where a,, and a, are a surface wave pole and saddle point,
respectively and the surface wave pole is near the saddle
point as shown in the above figure. Then, the integral is
evaluated asymptotically using the uniform saddle point
approximation (3}, and is given by

I(kr) = ei¥ [\/% T(0) £ j2v/xF(ay)

e Q(F4bVkr ) } (15)
; Im(b) >0
where
b= \f(e) - floyp) (186)
T(0) = :‘#":3+£%ﬂ (17)
-2
h = ‘/W (18)
QW) = /""’ e dz (19)

Using the above formula, the integral in Equation (14)
can be evaluated to obtain the surface ray field.
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Figure 3: Integration path and a surface wave pole ap
which is near the saddle point a,.

For convenience, let G in Equation (11) be expressed
as

G=f: Y Gma (20)

For analytical details, consider G, in Equation (20). For
n = 0, Ga, reduces to

G = J /; cosa — Zy e+ikrcu(a—l) (21)
2

Tax cosa+ Z,

where

-
!

1/2
[(Z< +z5) 4 (z - z:)z] (22)

)
0 = tm"l(f—"): a (23)
T — Z>

Then, the parameters in Equations (16)—(19) are expressed
as

fla) = jcos(a—a,) (24)

@) = —jcos(a—a,) (25)

b= ViT=oea—an) (26)
etin/ a, a

T(O) \/E :, :o{( ) + \/ie-if;;( si)n(g—‘z—"‘sg.,)

h = 2eit/t (28)

The analysis for G3g is very similar and is thus ommitted
here.

A comparison of the improved or uniform ray solution
with the exact modal solution shown in Figure 4 now
indicates that they are in excellent agreement.

3. Conclusion

The surface wave modes can be included in the modal
solution by simply evaluating the integral via the residue
theorem for the surface wave poles as done for the other
ordinary poles. In the ray method, a uniform asymptotic
treatment of the integral representation of the waveg-
uide Green’s function provides a simple tranastion func-
tion correction to the surface ray solution in terms of a
Fresnel integral.

An important characteristic of the surface wave type
fields is that the energy associated with the fields is guided
very close to the impedance surface. This surface wave
contribution to the total field at an observation point is
quite strong and must be considered in the field compu-
tations.
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Figure 4: Magnitude of G in the case of Figure 2 except
that the unsform transition function is included in the
ray solution.
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