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Soo-Young Lee, Chang-Sup Shim, Ju-Seog Jang, and Sang-Yung Shin

Korea Advanced Institute of Science and Technology, Department of Electrical Engineering

P.O. Box 150, Cheongryang, Seoul, Korea

ABSTRACT

Introducing and optimizing bit-significance to the
Hopfield model, ten highly correlated binary images,
i€, numbers "0" to "9", are successfully stored and
retrieved in a 6x8 node system. Unlike many other
neural networks models, this model has stronger error
correction capability for correlated images such as "6",
8", "3", and "9". The bit-significance optimization is
regarded as an adaptive learning process based on
least-mean-square error algorithm, and may be imple-
mented with another neural nets optimizer. A design
for electro-optic implementation including the adaptive

optimization networks is also introduced.

It is well known that the Hopfield model can suc-
cessfully retrieve data only when the amount of stored
data is much smaller than the number of neurons and
when the stored vectors are (pseudo) orthogon.'sl.l’2 For
many practical systems such as number and/or alphabet
recognition, the orthogonality is not satisfied, and more
complex models have been proposed>™>  Athale intro-
duced attention in correlation domain’, and we had
introduced relative significance of each bit, and shown
how a priori knowledge on bit significance improves

4

error-corrective  association performance. In this

Letter we show that optimization of the bit significance

for given stored images removes or at least relaxes the
orthogonality condition and increases storage capacity.
This is an adaptive learning process for bit significance
based on least-mean-square(LMS) algorithm, and may

be implemented with Widrow-Hoff optimizer.

We start with a simple modification on the

retrieving algorithm of the Hopfield model to obtain
N
t
% = T Tw2v-1) ‘
j=1 0
where w; is positive bit significance of the jth bit of
image vectors and N is number of neurons. The inter-
connection matrix T and thresholding operation are

same as the Hupoodd model but we do not set the

nonal terms zero. If the input vector v' is one of

he stored images, one obtains

N
o= @v-1)Zw,
j=1

+3 [(2vi‘—1)§N: wi(2vj~1)(2v{-1)]
ot =1 )
where unipolar binary images are assumed and the
second term corresponds to correlation noise. Because
one has (N-1) degrees of freedom to select relative sig-
nificance wj's, the correlation noise term can be minim-

ized for given stored image vectors.

Following LMS error algorithm one defines error

E as
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1 Ms-1 N N
Ew) = — Z T[T @v{-Dev-Dwl(Z wp?,
2 mtemt jm1 i=1
LI ®
2N,

and finds w = [w,w, wN]T for minimum error.
Here the error is summed over all (v*, v') pairs and
normalized over Nz = (ij)z, and S is an NxN posi-

tive semi-definite matrix with elements

Ms-1
§; = 2 3 (vi-1)(2v{ ~1)@2v] - 1)(2v{-1)

s=1t=1

1 .2
= --2—-(Tii—M). )
A simple iterative minimization procedure,

updates w by

Wt = W a gk where superscript k denotes k’th

steepest descent method,
iterative solutions and g is gradient of error, ie.
g = V,E = (Sw — IEN_)/N2 where

I=[111 --- I]T. Convergence of the above

iteration is guaranteed with proper choice of o

Optimum O Mmay be calculated by minimizing
E(w—a g) and approximated as Copt = gTSw/gTSg for
small w corrections. The denominator never goes to
zero unless g = 0, and ¢ exists for all non-optimum
w. Unlike other adaptive neural nets, this model does
not need previously learned images to learn a new
image. It only neceds T and M. This learning property
greatly reduces learning time as well as storage
requirements.

Increased associative performance of this bit-
significance optimization model is demonstrated by
computer simulation. Ten highly correlated images are
learned recursively from "0" to "9" in 6x8 nodes associ-
ative memories. Error correction probabilities versus
Hamming distance are plotted for this model and

single-layer perceptron in Fig. 1. 1000 input images

are randomly generated to satisfy required Hamming
distance with each of the stored images, fed to the
model, and their convergence characteristics are col-
lected. It is interesting to see that correlated images
such as "6", "8", "3", and "9" have much better error-
correction performance than uncorrelated images such
as "1" and "7" in our model. Perceptron, like many
other neural nets models, works poorly for correlated

images as shown in Fig. 1(b). This is the most
important  characteristics of the optimized-bit-

significance model, which minimizes sum of errors for
all stored image pairs. In case that some stored
images are highly correlated, errors contributed from
this images should be smaller to minimize overall error.
False converging rate is also much smaller for our
model than for the perceptron.

Electro-optic implementation has great potential
for neural metworks.” Calculations requiring N? order
of multiplications for N neuron systems are done by
optics, while electronics perform more complicated
functions. The optics portion of the design shown in
Fig. 2 is quite similar to optical implementation of per-
ceptron in Ref. 8. To take advantage of the optical
matrix-vector multiplier special consideration is required
for negative numbers. The Hopfield interconnection
weights Ty’s are modified to

M
Ty = 2—;—[(2v;—1)(2v;—1)+1], &)

s=1

and implemented by sum of two vector outer products,
A M

ie. T = I + Vi)l where  v* = 1-v
=1

Now Sij becomes

. . MM-1)
8 = 2Ty)* — 2MT; + ———— ©)
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In Fig. 2 all lenses for proper optics are not
shown for brevity, and all the SLMs and photo-
detectors (PDs) are connected to and controlled by a
personal computer. The learning and recall procedures
are summarized in Table 1. At learning stage SLM1
and SLM2 'are first set to a learning vector v* to
create vector outer products on the detector side of
the MSLM. Then the two SLMs are switched to v°.
In both cases the MSLM is set to ADD mode opera-
tion and generates a new T. At other times the
MSLM is set to READOUT mode. SLMS3, 4, and 5
are set to ON, w, and ON respectively, and PD1 and
PD2 are detecting T'w and S'w, respectively. Here
SJ -(Ti;)z. Gradient g and new bit-significance vector
w are calculated by the personal computer, and SLM4
is updated to w. For the Ope OnE resets SLMS to g
and gets gTS.w at PD1. Then resets SLM4 to g, and
gets gTS'g at PD1. Once S'w is calculated, w'S'w is
requiring N multiplications only. l

For proper recall one also needs to modify Eg.

(1) into

Ql,' = 42 'r:w.v.t
i

. t
v~ 22Ty — 2MIwy;
j i

™
+ MY W
i

and make each calculation contain positive values only.
At recall stage SLM3 and 4 are set to an input v'
and w, respectively, and PD1 detects the first term in
the right hand side of Eq. (7). The 2nd term has been
calculated at the learning stage and stored in the per-
sonal computer. The other terms may be calculated
electronically, and with proper thresholding a new v* is

obtained.

In conclusion we propose bit-significance optimiza-

tion of the Hopfield model and a design for electro-
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optic implementation. Computer simulation shows this
model works much better than standard Hopfield

model and single layer perceptron. The nice feature of
this new model includes superior error correction per-
formance for highly correlated images, and fast learn-
mg process witho-ut i)riviouSly—leamed images. Exten-

sion to multilayer structures is also under investigation.
FIGURE CAPTIONS
Fig.1 Error correction probability vs. Hamming distance

for 10 stored images (a) optimized bit-significance

model (b) single-layer perceptron.

Fig.2 Design for electro-optic hybrid implementation of

the optimized-bit-significance Hopfield model.
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