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On the Improvement of the Guaranteed Stability Margins for the Discrete Time LQ Regulator
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In this paper, the selection method of weighting matrices in the discrete-time LQ problem are suggested
in order to improve the guaranteed stability margins, i.e. the gain and phase margins. The asymptotic
properties of the solution of the algebraic Riccati equations are investigated by using the closed form
solution of the difference Riccati equations. It is shown that the solution of the algebraic Riccati
equations monotonically increases as the state weighting matrix Q or the control weighting matrix R
increase. The increasing rate of the solution is shown to be much less than that of R for large R.
It is also proven that the guaranteed stability margins increases as the ratio between Q and R decreases.

1. Introduction

It is well known that the LQ regulator for the single-
input single-output (SISO) continuous time system has
excellent guaranteed stability margins, i.e., the gain margin
of [0.5, o ) and the phase margin over + 60° for
arbitrary weighting matrices. For the muitivariable continuous
time system, it is also known that the LQ regulator can
posses the above guaranteed stability margins when the
control weighting matrix is diagonal [1]. It is known that
the guaranteed stability margins in the discrete time LQ
regulator can be equal to those of the continuous time LQ
regulator for a specific weighting matrices [2]. For general
weighting matrices, however, the discrete time L.Q regulator
does not have the same good stability margins as the
continuous time [.Q regulator. The fundamental reason for
the above fact is not mentioned in detail. Also the general
method to improve the guaranteed stability margins for the
LQ the
literatures. This paper explains the basic reason why the
discrete time LQ regulator does not have the guaranteed

discrete time regulator are not discussed in

stability margins like the continuous time LQ regulator and
suggests the general method to improve the guaranteed

stability margins for the discrete time case.

This paper is organized as follow. In Section 2, the
asymptotic properties of the solution of the algebraic Riccati
eqhations (ARE) and the property of the feedback gain in
the discrete time LQ regulator are investigated by using the
closed form solution of the discrete time difference Riccati
equation (DRE) [3] when the state weighting matrix tends
to zero or the control weighting matrix approaches infinity.
In Section 3, some comments for the basic reason why the
discrete 1LQ the same
guaranteed stability margins as the continuous time LQ
method the

time regulator can not have

regulator are mentioned. The to improve
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guaranteed stability margins in the discrete time case are
suggested. Conclusions are given in Section 4.

2. Asymptotic Properties of the ARE solution

We consider the discrete time, linear, time invariant and
controliable system S(A,B) whose state space description is
given by the following representation :

X, =Ax, +Bu, (2.1)
where x,& R®, ue R®, x+0 and A and B are constant
matrices with the appropriate dimensions. It is desired to
obtain the control law for u(k) that minimize the following
index of performance :

J=% [x7 Qx,+u” Ru,] (2.2)

i=1

where Qe R™ is positive definite and Re R™™ is positive
definite and diagonal. It is well known that the solution to

the above optimal regulator problem is given by the
following control law [4] :
u, = -Kx, (2.3)

where K is a constant feedback gain matrix that is defined
by
K= (R+BTPB) 'BTPA (2.4)

The constant matrix P is the positive definite solution of
the following ARE :

P-ATPA+Q-ATPB(R+B'PB)'B"PA (2.5)



The solution of the ARE (2.5) can be obtained from the
following DRE :

P,,,=ATP ,A+Q-A"P ,B(R+B"P ,B)"'B'P.A (2.6)

That is, the DRE solution P, converges to the ARE
solution P as i tends to infinity. Thus we can know the
properties of P by using the properties of P,. The following

closed form solution of DRE is recently derived in [3].

LEMMA 1 : The closed form solution can be represented
by the following equation :

P,-AT5A+Q (2.7)

where

5 o= NTIQ' + MR IIMTIT'N, (2.8)

N=| I, |, Mj=| B 0 0 |,
A AB B 0
A AU'B  A'?B B

Q,=diag[Q, ,Ql, R,=diag[R, ,R1,

and P, = Q.

Since P, converges to P as i tends to infinity, there
always exists a finite constant n, for fixed Q and R such
that for a given &0, o, [P,-P]< ¢ for j2n, where
ol -] By
using this fact, we can state the following theorem about

denotes the maximum singular value of [ -].
the properties of P.

THEOREM 1 :
Q

o

diagonal. For

Assume that Q= aQO and R=/S’R0 where
is positive definite and R, is positive definite and
the solution P of the ARE (2.5), the
following statements hold.

(1) T (A)<1,
for a fixed # and P converges to a finite constant matrix

P approaches zero as e tends to zero

as B goes to infinity for a fixed a.
and B
the increasing rate of P with respect

(2) P is a monotonical increasing function of «
and for a fixed «a,
to A is much less than that of R for large 8.

(3) The feedback gain K is same for all Q and R if the

ratio a/f is equal.

(4) The feedback gain K approaches a finite constant matrix
as a/8 tends to infinity.

PROOF : (1) Since o,(A)<1, N, and M, are finite even
though i tends to infinity. This implies that ¥ tends to
zero as o approaches zero for a fixed #. This fact also
implies that P, tends to zero as  « goes to zero for a
fixed 8. Therefore P tends to zero as @ approaches zero
for a fixed # since |PI-P| < e,
M.

For a fixed a, since

is finite,
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% - I (ANQA as oo

i
and P, = Z (AT)'QA’ + Q as B — =
Uyt

This limit of P, is finite since o, (A)}<1. Therefore P
approaches a finite constant matrix as g tends to infinity
for a fixed a.

(2) For a fixed # and i, the derivative of P, with respect
to a is given by

dP,/da = Q+A™N,"H"(I-a X(e))?HN A

where X(@) = HM,(e M,"Q,+R;)"'M,"H" and H'H =
Q Q/a Since dP/da is positive  definite, P,
monotonically increases with respect to e. Therefore P also
monotonically increases with respect to «. For a fixed e

and i, the derivative of P, with respect to B is given by
dp/dg = A™NTQMMTOM/S+R)'R,
(MiTQiMi/ B+R,) -lMiTQiN A/B ’

where R, = R/B. Since dP;/d# is positive definite, P,,
consequently P, monotonically increases with respect to £.
But since its derivative is proportional to 1/8%, its increasing
rate becomes much less than that of R for large 8.

(3) From Lemma 1,

% = NT[Q'/e +MR,'MT/B]}'N,
= a NJ[Q7'+(o/HMR,'MT]'N,
P, = e [ATN[Q '+ (o/AMRMTI'NA + Q,]
= a S, (a/h) (2.9)
K,(a/8) = [R+B'P,B]"'B'P,A
= e [BR,+e B"S (a/B)B]'B'S (/A A
= (/)R +B'S,(e/8)B1'B'S, (a/ DA
(2.10)
where Q = Q,/e and R; = R, /8. Since S does not
vary if e/ does not change, K, also does not vary.
Therefore K, the limit of K, is same for all ¢ and £

with the same ratio.
(4) It is noted that S(0) = ATNONA+ Q, from (2.9).
Let ¥ a/f. Then

dS,(7)/dy = -A™N,7[Q,"'+7 M;R,"'M,"]"'M,R,"'M,"
[Q'+y M,R,"'M,"1"'NA < 0

So S,(7»
to Q, + M, for a finite constant matrix as y goes to

is a nonincreasing function of ¥ and it tends

infinity. Therefore



lim K(» - [B'QB+B'M_B]'BY(Q +M)A

T o

Since Q, is positive definite, the limit value of K is
[Q.E.D]

finite even though ¥ tends to infinity.

The facts proven in Theorem 1 are illustrated by the
following examples.

EXAMPLE 1 : We consider a system and weighting matrices

as follows.

A=| .999 -.025 -.162 B=| .0048 .0939
.094 867 -.,239 -.0129 .0052
.126  .231 636 .1065 .0682

Q, = 100 R, = 10

011 01
011
where o, (A) = 1.0398. P and K for each « and each
B are given as follows.
a
1.699E-3 -5.005E-4 -4.257E-4
P }-5.005E-4 8.260E-4 1.475E-4
-4 ,257E-4 1,475E-4 3.298E-4|1.E-4
K |-3.003E-5 1.025E-5 2.419E-5
1.244E-4 -3.533E-5 -2.357E-5
1.683E-1 -4,923E-2 -4,230E-2
P |-4.923E-2 8.218E-2 1.463E-2
-4.230E-2 1.463E-2 3.292E-2|1.E-2
K 1-2.992E-3 1.020E-3 2.416E-3
1.230E-2 -3.464E-3 -2.335E-3
1.045E01 -2.009E00 -3.000E00
P |-2.009E00 6.690E00 9.688E-1
~3.000E00 9.688E-1 2.955E00|1.E00
K |-2.298E-1 7.609E-2 2,143E-1
7.083E-1 -1.052E-1 -1.410E-1
1.857E02 -4.096E00 -3.373E01
P |-4.096E00 4.643E02 4.499E01
L ~3.373E01 4.499E01 1.416E02|1.E02
K -2.7579 0.38549 4.1269
6.0780 1.8375 -0.81898
1.028E04 -1.981E03 2.204E02
P |~1.981E03 4.417E04 4.919E03
2.204E02 4,919E03 1.082E04)1.E04
K -6.5414 -1.0656 7.7150
10.568 3.9064 -2.6572
1.012E06 -2.028E05 2.998E04
P |-2.028E05 4.413E06 4.941E05
2.998E04 4.941E05 1.075E06|1.E06
K -6.7170 -1.1468 7.8511
10,738 3.9883 -2.7537
1.014E08 -2.296E07 3.403E06
P [-2.296E07 4.603E08 4.660E07
3.403E06 4.660E07 1,080E08|1.E08
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K | -6.6891 -1.6487 7.9268
10.736  4.0504 -2.7638
(8 =1)
B
16.992 -5.0046 -4.2572
P | -5.0046 8.2604 1.4753
-4.2572  1.4753  3.2986 1.E04
K |-3.003E-5 1.025E-5 2.419E-5
1.244E-4 -3.533E-5 -2.357E-5
16.826 -4.9230 -4.2301
P | -4.9230 8.2179 1.4630
-4.2301 1.4630 3.2922 |1.E02
K {-2.992E-3 1.020E-3 2.416E-3
1.230E-2 -3.464E-3 -2.335E-3
10,454 -2.0089  -3.0004
P | -2.0089 6.6897 0.9688
-3.0004 0.9688 2.9585 |1.E00
K |-2.298E-1 7.609E-2 2.143E-1
7.083E-1 -1.052E-1 -1.410E-1 ¥
1.8568 -4.096E-2 -3.373E-1
P |-4.096E-2 4.6433 4.499E-1
-3.373E-1 4.499E-1 1.4163 |1.E-2
K | -2.7579 0.38549 41269
6.0780 1.8375 -0.81898
1.0278 -1.981E-1 2.204E-2
P |-1.981E-1 4.4173 4.919E-1
2.204E-2 4.919E-1 1.0818 |1.E-4
K | -6.5414 -1.0656 7.7150 !
10.568 3.9064 -2.6572 |
1.0121  -2.028E-1 2.998E-2
P |-2.028E-1 4.4133 4.941E-1
2.998E-2 4.941E-1 1.0750 |1.E-6
| K| -6.7170 ~1.1468 7.8511
10.738 3.9883  ~2.7537
_
1.0121 -2.028E-1 3.006E-2
P |-2.028E-1 4.4133 4.941E-1
3.006E-2 4.941E-1 1.075 1.E-8
K | ~6.6891 -1.6487 7.9268
10.736  4.0504  -2.7638 | wj
(a = 1)

From above two tables, it is noted that P monotonically
increases as o and &

depends on only o/8.

increase and the feedback gain

3. Improvement of the Guaranteed Stability Margins for

LQR

It is known that the discrete LQ regulator can not
have the same guaranteed stability margins as the continuous
time LQ regulator. This fact also applies to the discrete
time feedback system with a constant gain fecedback. The
return difference matrix F(z) of the closed loop discrete time
system with a constant gain feedback K is given by

F(z) = I

+ K(zI, - A)"'B (3.1)

m



From [5], it is noted that the discrete time feedback system
can have the the
continuous time LQ regulator if ¢ [F(z)]=2 1, z=¢" for
any positive w where ¢ [ -] denotes the minimum singular
value of [ -]. Since det(e’*I -A) is finite for all positive
w, o [F(e'")]=1 only if K(zI -A)™'B has at least
one zero on the unit circle. In general, the discrete time

same guaranteed stability margins as

system has no zeros on the unit circle and the constant
gain feedback can not change the zero position of the open
loop system. Therefore any constant gain feedback discrete
time system without zeros on the unit circle can not have
the same guaranteed stability margins as the continuous time
LQ regulator. But we can enlarge the guaranteed stability
margins of the discrete time LQ regulator in some cases.
We obtain the following equation from ARE (2.4) and the

return difference matrix (3.1) [2].

F*(z) (R+B™PB)F(z) = R+BT(z!'I ~A")"'Q

(zI -A)'B  (3.2)
where [ -]* denotes the conjugate transpose of [ -]. Since
BT(z'1 -AT)"'Q(zI,-A)"'B = 0, we can obtain the
following inequality :

F*(z)(R+B'PB)F(z) 2 R (3.3)

If ¢ (B™PB) is very small compared with o (R),
o [F(z)] In the
guaranteed stability margins become large. Therefore we only
need to investigate the method to make o, (B"PB) /g, (R)
as small as possible. By using the results of Theorem 1,

becomes nearly 1. consequence,

we obtain the following theorem.

THEOREM 2 : Assume that Q=¢a Q0 and R=28 Im where
Q.>0, ¢>0, and #>0. Then the following statements hold.
(l)' The smaller is «, the larger the guaranteed stability
margins. And the larger is £, the larger the guaranteed
stability margins.

(2) When o, (A)<1, the guaranteed stability margins of the
continuous time LQ regulator are asymptotically achieved in
the discrete time LQ regulator as e tends to zero or 8
goes to infinity.

(3) The guaranteed stability margins are same if the ratio
a/f is equal.

PROOF : (1) Form the (2) of Theorem 1, it is known
that e — 0 the
increasing rate of P becomes much less than that of R as
8 This fact implies that o, (B'PB) — 0 as a —
0 and the increasing rate of o, (B"PB) becomes much lee
than that of R as A — o Therefore the guaranteed

P monotonically decreases  as and

stability margins monotonically increase as ¢ — 0 or g —

o

(2) From the (1) of Theorem 1,
monotonically tends to zero as a

it is known that P
goes to zero and P
monotonically increases and converges to a finite constant
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matrix as 4 approaches infinity. These facts imply that
6,(B'PB) tends to a

¢, (B"PB)/8 B
Therefore the guaranteed stability margins of the continuous
time LQ regulator can be asymptotically achieved in the

zero  as goes to zero and

approaches zero as tends to infinity.

discrete time LQ regulator.
(3) From the (3) of Theorem 1, it is noted that K is
same if the ratio /8 is equal. Thus F(z) is same for all
Q and R with the same ratio a/f. Therefore the
guaranteed stability margins are also equal. [Q.E.D.]

From Theorem 2, it is noted that the
stability margins of the discrete time LQ regulator can be
made large under some assumptions if Q becomes small or

guaranteed

R becomes large. This fact is illustrated by the following
example.

EXAMPLE 2 : We consider the same system and weighting
matrices in Theorem 1. We obtain the following results

about stability margins.

o/ GM PM(deg)| o [F(z)]
1.E08(.6727, 1.9478; 28.163 0.48661
1.E06].6718, 1.9546| 28.267 0.48838

—
1.E04|.6671, 1.9958] 28.893 0.49891
1.E02|.5873, 3.4882| 41.790 0.71331
1.E00(.5073, 34.483| 58.090 0.97100
1.E-2].5001, 1785.7| 59.963 0.99944
1.E-4|.5000, 5882.4| 59.989 0.99983

From the above table, it is noted that the gain and phase
margins increase monotonically as a/f decreases and they
are dependent on only a/f.

4. Conclusions

In this paper, the general method to improve the
guaranteed stability margins for the discrete time LQ
regulator has been suggested. By using the closed form
solution of the difference Riccati equation, several properties
of the solution of the algebraic Riccati equation has been
easily proven. It was shown that if the maximum singular
value of system matrix A is less than 1, the ARE solution
monotonically tends to zero as the state weighting matrix Q
approaches zero and to a finite constant matrix as the
control weighting matrix R tends to infinity. For the general
system matrix A, the ARE solution monotonically increases
as Q or R increase and its increasing rate is much less
than that of R for large R. The feedback gain depends on
only the ratio between Q and R. The feedback gain tends
to a finite constant matrix even though the ratio between
Q and R goes to infinity. It was also shown that the
guaranteed stability margins monotonically increases as the
ratio between Q and R decreases. The good guaranteed
stability margins of the continuous time LQ regulator can be



achieved in the discrete time LQ regulator if the maximum
singular value of the system matrix A is less than 1.

The method of this paper for the improvement of the
guaranteed stability margins is believed to be useful for the
design of the discrete time LQ regulator. The relationship
between the guaranteed stability margins and the robustness
against modeling errors are not clear. Thus this relationship
needs to be investigated.
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