89 KACC 1989. 10. 27~28

On the Invariance of Root Distribution of Interval Polynomials

Hideki Kokame"

and

Takehiro Mori™*

# Department of Electrical Engineering, Osaka Institute of Technology,
Omiya, Asahi-ku, Osaka 535, JAPAN

## Automation Research Laboratory, Kyoto University

Gokasho, Uji,

Abstract: In this
Kharitonov's theorem
considered here 1is

paper, an extension of
i{s studied. The problem
the invariance of the
numbers of stable and unstable roots of
interval polynomials. A simple criterion is
provided to test interval polynomials for the
root distribution invariance.

1. Introduction
Robust stability of linear systems with

uncertain parameters has been a very popular
research topic. One of the great Impetus so

far given to this topic is Kharitonov's
theorem[1] on the stability of interval
polynomials. The theorem says that robust

stability is assured only by knowing that four
specially constructed "extreme polynomials”,
called the Kharitonov polynomials, are Hurwitz.
Hence, if information on the lower and upper
bounds of the coefficients of the
characteristic polynomial is available, 1t is
very easy to check the robust stability.

His result has got attention of many
researchers. Anderson et al.[2] has shown that
fewer polynomials are sufficient when 1low
order polynomials are concerned. Similar
results in the case of discrete-time systems
have been rigorously sought[3]-[6].
Kharitonov's Theorem has been extended to the
case of complex polynomials{7]}[8], where only
eight extreme polynomials are sufficient for
checking the robust Hurwitz stability. An
extension to time-delay systems has been
obtained by the authors{9]. Recently Chapellat
and Bhattacharyya[10] have shown "Box theorem”
for linear combinations of interval polynomials
with known polynomial coefficlents.

This paper considers Kharitonov's
original situation, but in a wider view:
The target of the paper is the invariance of
root distribution of interval polynomials.
Precisely speaking, the invariance concerned
here is that of the numbers of stable and
unstable roots over interval polynomials, where
the roots in the open left-half plane are said
to be stable and those in the open right-half
plane are said to be unstable.

Apparently there seem to hold similar
results to Kharitonov's theorem. That is, the
root distribution invariance seems to hold if
the four Kharitonov polynomials, or 1if all the
extreme polynomials, have the same root
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distribution. This conjecture however has been
negated by the following fourth order
polynomials
fa(s) = st 2s3 + Ss2
+ as + 4, ael[0,9]. (1)

The interval polynomials have two extreme
polynomials, fy(s) and fg(s). The first column
of the Routh table for tgese polynomials is {1,
2, 5, -1.6, 4} and {1, 2, 0.5, -7, 4},
respectively. Hence '~ both the extreme
polynomials have two stable roots and two
unstable roots. Notice that they have a same
root distribution. Here we check the root
distribution of f5(s), a member of (1). The
first column of the Routh table is {1, 2, 2.5,
1.8, 4}, and we know that f-(s) has only
stable roots. Thus the aforementioned
conjecture is proved too optimistic.

The goal of the present paper 1s to show
that it suffices to check the Kharitonov edge
polynomials, defined later, for the root
distribution invariance. A sufficient condition
is also provided which enables us to verify the
property with computational efficiency.

2. Notation and Defipition

Let C be the complex plane, and let C_ and
C, be the open left-half and right-half plane,
respectively. For k=0,1,..,n, let H; denote
the set of the n-th order real polynomials that
have k roots in C_ and n-k roots in C,. Note

that Hn represents the set of Hurwitz
polynomials. A family of polynomials is said
to be Hk-invariant if all the member

polynomials are included in Hy.

Let F be the family of n-th order real

polynomials
f(s) = s" + fls“'l + fzs"'2 LR
(2)
where
011 < fi < Bl' i=l....,n. (3)

The polynomials (2) and (3) are called interval
polynomials. By separating even and odd order
parts, they can be written as

£(s) = h(s2) + sg(s2). (4)



Define four extreme polynomials of h(s) and
g(s):

hy(s) =3, + By o8 + an_4s2 + ﬁn—ss3 e
hy(s) = By +op g8 + ﬁn-‘iSZ top-gSt * -
gg(8) = Ap_y + Bp-35 * o58° * By 783
gyls) = Bp_q * X498 +pn_5s +\’Xn_7s3 ..

(5)

Then the Kharitonov polynomials can be written
as follows:

fom(s) = hn(sz) + sgm(sz)
fom(s) = hp(s?) + sgy(s?
fyn(s) = hy(s?) + sgy(s?) (6)
fym(s) = hM(sz) + ng(sz).

For two polynomials,

a(s) = agsP + alsp‘1 + ... +a

b(s) = bysd + blsth ¢ ..t ag,

Sylvester's resultant matrix is defined by

S(a,b) =[a; a; ... ap ]
8y --. 85,1 8p q
Bo ap /
by by ... b
bo . bq—l bq p
] bo . bq_ (7)

the bezoutian matrix( see, e.g.[11]) is defined
by
Z(a, b) = {Zij}’ (8)

where the 2z J's are the coefficients of the

bezoutian
a(A)b(pu) - a()b(})
Z[a, b] = # a
A-H
m m
= 3 leli-lﬁj_l (9)

i=1 j=1

where m 1s the maximum of p and gq. The

bezoutian matrix is a symmetric matrix.

3. Invariance Condition of Root Distribution

The problem is to find a small subclass of
interval polynomials such that the Hy -
invariance of the subclass guarantees that of
the whole class. A solution in the following
has been obtained by scrutinizing the
subclass{10]{12]:
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Fp = {£3,(8) = (1-2)hy(s?) + Any(s?)
+ s{(l-p)gm(sz) +/AgM(s2) 1:

A, pelo, 11} (10)
constitutes a polytope that has the
Kﬁaritonov polynomials as its vertices. It is

called the Kharitonov plane since it lies on an
affine plane. Chapellat and Bhattacharyya have
shown in [12] that if Fp is Hy-invariant, then
F is also Hn~1nvar1ant. An extension of this
result is as follows.

[Lemma 1] If Fp 1s Hk—invariant then F is H -
invariant. ( k = n.
Proof: Assume that there exists an fe F such

that f ¢ Hk Since F_C Hy, a continuity
property assures the exigtence of such that
f € F and it has a root on the 1mag%nary axis.

Furthermore the argument in [12] can lead to
the assertion that there exists a polynomial
in F_ that has a root on the imaginary axls. To
be self-contained, we give a rough sketch of
proof. From the assumption on fe' we can find

a w20 such that

£e(iw) = 0.

Since f € F, the extremum property of the
Kharitonov polynomials yields
hy (-w2) < Re £, (jw) < hy(-w2)

gm(-wz) SIm f (W)= gM(-wz) .

Then we can find some A, u ¢ [0, 1] such that

Re f (Jw)
Im f,(jw)

(1-20hy (-%2) + Ahy(-w?)
(1-pgg (-w2) + pgy (-w2).

Hence fAH with this pair of A and M belongs to
F and satisfies

fAH(Jw) = 0.

This contradicts the assumption of Lemma 1.
Q.E.D.

Chapellat and Bhattacharyya have shown

that if the Kharitonov polynomials are in Hn,
is H -invariant. Although parallelism does
ngt hold for the general H,-invariance, we
obtain an alternative by utilizing “Kharitonov

edges”, 1.e., edge polynomials of the
Kharitonov plane:

Fy = {1 - Aepa(s) + Afyp(s): Aefo, 11}

Fp = {(1 - A)me(s) + Afyy(s): Ae {0, 11}

Fq = {(1 - Mfyy(s) + Afyu(s): ae [0, 11}

Fq = {1 - Nfgys) + AMpn(s): xe [0, 1]},

(11)
[Lemma 2] 1f F,UF UFg3UFy C Hy . (12)
then
Fp C Hy (k=0,1,..., n),

i.e., the Kharitonov plane is Hk—invariant.



Proof: The key of proof is application of the
edge theorem [13]{14]. In the cases when k#0
and k¥n, the polynomials in Hk have their roots
in the disconnected region D = C, U C_.
However, since the complement of D is pathwise
connected, the extended edge theorem[14] is
applicable. By noting that the exposed edges
of F_. are (11), we have the conclusion.

P Q.E.D.

These are summarized as follows.

[Theorem 1} The family of real interval
polynomials F is Hk—invarlant if and only if

FjUF,UFgUF, C Hy.
(k=0,1,...,n.)

4. One shot Approach

To implement Theorem 1, we need a method
of testing the Kharitonov edges for the Hi-
invariance. The method proposed is a kind of
"one shot test”, considered by Bialas{15] and
Fu and Barmish{16], for checking the Hurwitz
invariance. The following lemma is essential
for our method.

[Lemma 3]
written by

Let f(s) be a real polynomial

£(s) = h(s2) + sg(s?).

If £(0)=h(0)%¥0 and the bezoutian matrix Z(h, g)
{(or the resultant matrix S(h, g)) is
nonsingular, then f(s) has no roots on the
imaginary axis.

Proof: Suppose f(s) has a root s=jw. Then
f(jw)=h(—w2)+ng(—w2)=0. Since w cannot be O,
h(—w2)=g(—w2)=0. Thus h(s} and g(s) are not
relatively prime, contradicting the assumption
that Z(h, g)(or S(h, g)) is nonsingular.

Q.E.D.

Note that the nonsingularity condition is
sufficient but not necessary. We give a simple
example:

d(s) = s? + 3 - 32 —5 2.

Since the real part of d(jw) is always

positive, d(s) has no roots on the Imaginary
axis. However Sylvester's resultant S for the
case of d(s) is

1-3 2
det|1 -1 0| = 0.
0 1 -1
Due to Lemma 3, we have a simple criterion
for the Hk—invariance.
[Theorem 2] Under the condition
0 & o, ﬁn]’ (13)

FCHhy if

898

(a) at least one of the Kharitonov polynomials
(6) is in Hy, and

(b) the following matrices have no real
eigenvalues in (-oo, 0]:
Vv, = Llhy, gp)l(hg, gp)71
Vy = Zihy, gy)Zihy, gg)7L
V3 = Z(hlll’ gM)Z(hM‘ gm)—l (14)
Vg = Z(hg, gp)Zlhy, gyt
Proof: Due to symmetry of (a) and (b), it is
sufficient to consider the case when f__(s) is
in Hy. First we show that Fc Hk‘ Fy is

rewritten as

Fy = {f,(s)=(1-2)hy(s?) + ahy(s?) + sgy(s?):
A€o, 11}. (15)

Note that f,(s)=f__(s) and f,(s)=fy (s}. As is
seen from the def?%ition (9), the bezoutian is
bilinear. Hence the bezoutian in Lemma 3
applied to the case of f;(s) In (15) can be
written as

Z((1-Ahy + Ahy, gy) = (1-M)Zthy, gp)

+ AL(hy, gp)- (16)
Now the assumption (b) of V, leads to the
following inequality:

det Z((l-/\)hIll + Ahy, g5) ¥ 0, A€ [0, 1]

(17)
The proof of (17) is quite similar to [18] and
thus will be omitted.

Since (13) implies £ 4(0)%0,
Lemma 3 yields that f,(s), xe[o0,
roots on the imaginary axis. Hence by a
continuity argument, Flc Hk' especially
me(s) e Hy. Repeating the same argument with
Vz, V3 and V,, we have FZCIHk, Fq CH and
F4<:Hk sequentially. Thus by Theorem 1, #C Hk'

Q.E.D.

(17) with
1], has no

The of

Theorem 2.

following is a special case

[Corollary 11 Assume that the interval
polynomials (2) have the common odd-order part
(even-order part). Then under the condition
(13), FCHk if

(a) fmm(s)e Hy (me(s)e Hk), and
(b) the matrix V (V2) in (14) has no real
eigenvalues in (-, 0].

Remarks on Theorem 2 and Corollary 1 are
in order.

(i) The condition (13) assures that the
interval polynomials have no roots on the
origin. Then it 1s only a necessary condition
for the Hk—invariance.

(i1) The inverse matrices in (14) are assumed
to exist implicitly. However, 1t is
unnecessary to check the existence for all the



matrices Zthp, gp), Z(hy, gy), Z(hy, gy) and
Z(hm, gM) beforehand. In fact, the proof of
Theorem 2 have shown that if one of them is
nonsingular and if the corresponding part of

condition (b) holds, then the the succeeding
matrix is also nonsingular.
(iii) It is to be noticed that the condition

(b) in itself gurantees that all the interval
polynomials have the same number of stable and
unstable roots. The condition (a) only declares
the numbers.

(iv) It has been found[15])[16] that convex
combinations of n-th order Hurwitz polynomials
fl(s] and fz(s) are Hurwitz invariant if and
only if

Hur (£, )Hur (£,) "1 (18)

is nonsingular, where Hur(f) is the Hurwitz

discriminant matrix for the stability of f(s).

Under the assumption of the nonzero constant
term like (13), the Hurwitz matrix can be
replaced by its (n-1)x{(n-1) 1leading principal
submatrix H(f). The submatrix H(f) is written

as
H(f) = a; ag . a, 0. 0
ag a9 ... ap.y 0. 0
0 a; ag . ay 0
0 0 ag a, a,

(19)
where n is assumed to be odd and

f(s) = n-1

aos" + as oot oag.
Note that H{f) 1s transformed to S(h, g} by
interchanging rows, where h and g are obtained
from even and odd order decomposition of f: if

n is odd,
his) = alsm
g(s) =
where m={n-1)/2, and if n is even,
L azsm_1 + oL

+ a3sm~2 + ...

h{s)
g(s)

ags
Sm—l

I

a1

where m=n/2.
Thus the Hurwitz invariance condition of
[15][16] is equivalent to the following:

S(hy, g7)Sthy, g5)7t (20)
is nonsingular.

Compared to this criterion, Theorem 2
utilizes the bezoutian matrix. As noticed

easily from Lemma 3 and the bilinearity of
S{h, g), Theorem 2 remains valid even if
Z(h,, g,)'s are replaced by S(h,, g,)'s.

Since the size of bezoutian matrices is m,
approximately a half of that of §, we know that
using the bezoutian matrices significantly
alleviates the computational burden for the Hk—
invariance test.
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(v) We can obtain Kharitonov's theorem from
Theorem 2. It suffices to see the validity of
the conditions of Theorem 2, assuming that k=n
and the Kharitonov polynomials (6) are in Hp,

First, the condition <(a) and (13) are
immediate. From Lemma 4 in Appendix, Z(hm, gm),
Z(hm, gy). Z(hy, g;), and Z(hy, hy) are
positive-definite symmetric matrices. Thus all

the eigenvalues of Vi's are real positive,
leading to (b).

5. Example

We use the fourth-order example (1) in
Introduction, Even- and odd-order parts of (1)
are

his) = s2 + 53 + 4

ga(s) = 2s + a, aefo0, 9],

and the bezoutian matrix is

5a-8 a
Zt(h, gy) = (21)

a ZJ.

¥e can apply Corollary 1 since the even-order
part Is fixed. Recalling that the extreme
polynomials fo(s) and fg(s) are in H2 and

Fc;Hz. Vo should have a non-positive real
elgenvalue. 1In fact, eigenvalues of
37 9l[-8 o]} -37 36
Vg = = 1/8
9 2 0 2 -9 8

are -7/2 and -1/8.

If the interval of a is replaced by [0,
1], eigenvalues of

-3 1][-8 0]°! [3 4
S

are 1/2 and 7/8. Thus we know
invariance of fa(s) for ae[0, 1].

—

the

Ho

6. Conclusion

We have studied the problem concerned with
the invariance of the numbers of stable and
unstable roots over interval polynomials. In
the first, the invariance desired has been
shown to be equivalent to the invariance
relation over the Kharitonov edge polynomials.
Furthermore a simple criterion which can be
viewed as an extension of Kharitonov's theorem
was provided by using resultant matrices.

The results obtained would be useful to
investigate robust stability of feedback
systems using Nyquist plots. In this
application, the Hy -invariance of open-loop
systems is an indispensable requisite to be
checked at first. Then robust stability will
be discussed based on the distance between the
point -1 and the Nyquist band described on the
complex plane.



Further research is needed to reduce
conservatism involved in the present criterion.
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Appendix

[Lemma 4] If an n-th order real polynomial

£(s) = h(s?) + sg(s?)

is Hurwitz, then the bezoutian matrix Z(h, g)
is positive-definite.

Proof: Since h(s) and g(s) constitute a
"positive pair"(see [17]), the Cauchy index of
g(s)/h(s) on the interval (- o, o0) is m, where
m is the order of h(s). Recalling that the
signature of Z(h, g) is equal to the Cauchy
index of g(s)/h(s)[11]1, Z(h, g) is positive-
definite.
Q.E.D.
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