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By structural comparison of process optimization strategies based on Simultaneous Modular Approach ,

they can be classified into two groups

: the Sequential Module Based Approach and the Two-Tier

Approach. The Sequential Module Based Approach needs rigorous models and a set of accurate solutions
are guranteed. However, it requires large amount of computation time. In the Two-Tier Approach
composed of rigorous and simplified models, optimization calculation uses simplified models, therefore
comparatively smaller amount of computation time is required but the obtained solutions may not be
accurate. These optimization problems were somewhat improved by the alternate application of the two
strategies. In this study, improved optimization strategy is suggested, in which Jacobian Matrix is modified
to accomodate the strong points of above mentioned strategies. The results of case study show that

this approach is superior to the other strategies.

1. Introduction

For the design and improvement of chemical

processes, simulation and optimization  are
indespensible tools. Though process simulation has
been used widely since a long time ago, the actual
application of process optimization which has far much
complex structure was almost impossible because of
huge amount of computation. But from the end of
1970’s process optimization has entered upon a new
phase  with the developments in Nonlinear
Programming Techniques and optimization strategies
[1,2,3,4,5]. More than 100 STE(Simulation Time
Equivalence) was required for chemical process
optimization till the early of 1970’s but only 1-5 STE
is sufficient from 1980’s as the results of developments
techniques(NLP)

strategies[6,7,8,9,10]. The purpose of this study is to

in optimization and optimization

develop more improved strategy of process

optimization and to prove its performance with

benchmark problems. The strategy of
developed in two
Sequential Module Based Approach and Two-Tier

Approach. These two directions have their own merits

process

optimization is directions

and demerits. Nowadays, new optimization strategies
combining the strong points of both directions by the
alternate application of these two directions.

In this improved optimization
named MIS(Modified Jacobian Strategy) is developed,

study strategy
in which Jacobian Matrix is modified to integrate the
strong points of above-mentioned strategies. To check

the performance of the developed strategy it should
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be compared with other optimization strategies. For
convenience, the developed strategy is compared with
Sequential Module Based Approach which is the most

popular subject of comparison.
2. Process Optimization Strategy

In general, because the process optimization
problem is given in the form of profit maximization
or minimization of operating cost, preprocessing is
necessary for the application of the optimization
technique which is called the process optimization
strategy. In other words, process optimization strategy
is a procedure to reform an abstract optimization
problem to a definite one to which process
optimization technique is applicable. Undoubtly, the
process optimization strategy is closely connected with
the selected optimization technique.

Process optimization strategies are classified into
three groups : Sequential Modular Approach, Equation
Based Approach and Simultaneous Modular Approach.
The third approach which comes from the combination
of the first two approaches and it is acknowledged
to be most reasonable. In this study, the Simultaneous
Modular Approach is selected. But, there are many
branches in the Simultaneous Modular Approach as
shown is Fig. 1. The differences among those are
explained with Table 1 and Fig. 1.

In Figure 2, if we get point d’ from ¢’ indicating
the complete convergence of process simulation before
a optimization step is proceeded it is called a Feasible

Path Strategy, and d" from c¢" indicating little



Table 1. Comparison betveea Ssquential Modular Infeasible Path Approach and Two-Tier Approach.

Sequeatial Modele Basad Approach Two-Tier  Approach

Construction of

Tear stream connectivity equations
Jacobian matrix

and design specification equations
s,

Decision variables and tearing
variables

Redyced model equations and
design specification equations
v

Decision varishles and state
variables

Characteristics An optimal solution is guaranteed A suboptimal soiution may be
Y otai

tained

Large amount of computation tise Small amount of cowputation time

Modifications Jacobian satrix approximation
Introduction of reduced model for
Jacobian matrix calculation vhen
the soletion is not near

Restart vith Sequential Modular
Approach after the solutioms based
on the reduced model are obtained

Simultaneous Hodular

Approach
Sequential Two-Tier Hybrid
Hodule Based Approach Approach
Approach
Feasible Infeasible Hybrid Restart R/S Revised Jacobian
Path Path Path Hethod Hethod Strategy
Approach Approach Approach Proposed in This
C Partial ] Thesis
Convergence

Fig. | Classification of Strategies Based on Simultaneous Hodular Approach

convergence of process simulation that is called the
Infeasible Path Strategy. Also, d from ¢ which is an
intermediate case of previous two cases it is called
the Partial Convergence Strategy{11,13,14]. So as to
compensate demerits appeared in Table 1, the R/S
Method[12] and the Restart Method[10] are developed
by the alternate application of Sequential Module
Based Approach and the Two-Tier Approach.

3. Improved Strategy of Process Optimization

In this study, a hybrid approach which integrates
of Sequential Module Based
Approach and Two-Tier Approach is selected and

the strong points
more improved strategy is proposed.

(state variable)
y

,y)=0

x(design variable)

Fig. 2  Strategy of Process Optimization
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3.1. Modified Jacobian Strategy

Since the simplified model has been used in
process simulation or optimization it is well known
that the simplified model provide very good results
in process simulation. The difference comes from the
fact that

gradients, but simulation problems require the same

optimization problems require accurate
values at base points when two kinds of models
(Rigorous and Simplified model) are used and the
parameters of simplified models are decided to do
that.

So as to solve such as below problems

Min D(x, )

X

s.t. Wx,y)=y-Wx,y)=20
fxy)=so

where x : decision variable vector

y : tear variable vector
W : calculated tear stream variable

The Hessian Metrix H should be constructed first.
Then, to construct H, Jacobian Matrix which is shown
in Fig. 3 is needed next. If we make H with the
Jacibian Matrix of Fig. 3-a then it is Sequential
Module Based Approach, and if H is combined with
the Jacobian Matrix of Fig. 3-b then it is a Two-Tier
Approach. The merits and demerits of these two
approaches were compared previously.

In the Jacobian Matrix equality constraints vs.
state variable parts are related to the convergence of
the whole process. On the other hand, the equality
constraints vs. independent variable parts and partial
differentials 6f objective functions vs. independent
variables are strongly related to the solution of a
optimization problem. Objective function is always
rigorous and inequality constraints represent lower and
upper bounds of variables (inequality constraints
representing design specifications which are converted
to equality constraints by using slack variables and
included in h(x,y) = 0).

inequality constraints are all the same in the above-

Objective function and

mentioned two strategies.

The use of the Two-Tier Approach in process
simulation has been adventageous but a rigorous
model is necessary for accurate gradients which results

in accurate solution of process optimization problem



(2) Jacobian Matrix by Rigorous Hodel
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(c) Modified Jacobian Matrix

Fig. 3 Tihree Types of Jacobian Hatrix
(a} Jacobian Matrix by Rigorous Model
(b) Jacobian Matrix by Simplified Model
(c) Modified Jacobian Matrix
wlhere s @ simplified, r : rigorous

[19]. With all these facts, it is concluded that the
reduced model is good enough for the Jacobian of
equality constraints vs. state variables. However, the
rigorous model is necessary for the Jacobian of
equality- constraints vs. design variables in order to
obtain an accurate solution with less amount of
computation. This particular Jacobian Matrix is named
Modified Jacobian Matrix which is shown in Fig. 3-
Cc.

In the Modified Jacobian Matrix, ah‘/ay reduces
computation time and dh/dx guarantees the accuracy
of the obtained solution. Here h represents total
process modeling equation by using a reduced model.
Boston, et al.[16], Jiraphongphan([15], Trevino Rozano
[10], etc. developed reduced models for the various
unit of chemijcal processes. If appeared in the form
of Modified Jacobian Matrix, the fraction of tear
variables in the whole variables increases that is to
say if the complexity of a process increases, relative
performence of Modified Jacobian Matrix increases.
This strategy using Modified Jacobian Matrix is the
name for MJS(Modified Jacobian Matrix).

3.2. The validity of Modified Jacobian Strategy

As mentioned previously it is not simple to have
accurate solutions and to reduce the amount of
computation. In this study accurate solution means

the solution which is obtained by using a rigorous
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model. The accuracy of the obtained solution depends
on the kind of model used in the optimization
problem. For the chemical process, let o be properties
calculated by the rigorous model P(x,y,a,y) such as
K-values or enthalpies, where

x : design variables (ex. reactor pressure)

y : state (dependent) variables (ex. stream
component flow rates)

Y : values from process database.
(P1) Min  O(x,y,a)
s.t. glx,y,) < 0
h(x,y,a) = 0
a - P(xy,a,y) = 0
where h(x,y,a) = 0 (process modeling equations) and

o« - P(x,y,a,y) = O represents total process. KKT
(Karush-Kuhn-Tucker) conditions for this problem are

\ B, V.2 V,h - VP U
VD | +]| Ve v,h - VP Vi=10 ()
V.2 Ve Vb I-vpllt

gxy,e) < 0

h(x,y,0) = 0

a - P{xy,o,y) = 0
Uz=o0

U glx,y,0) = 0
where U, V, t are multifliers.

In this optimization problem, to apply Inside-out
concept reduced model K(x,y,a,8) is introduced and
used with rigorous model P(x,y,a,y), where B is
determined to satisfy a = P(x,y,a,y) = K(x,y,a,8)
at base points (for the detail information of the Inside-
out concept{16] will be helpful). Therefore, rigorous
models are replaced by reduced models K(x,y,a,B),
KKT conditions are

V.2 Ve Vo o- VK U
VG [+ | Ve V,h - VK V= 0@
VS . V.2 V.h I - VK t

gxy,e) < 0

hx,y,«) = 0

a - KxyeB) = 0

U glx,y,a) = 0



(1) is the condition of optimal solution based on
rigorous models and (2) is one based on reduced
by using Two-Tier Approach).
h are same for both (1) and

models (that is,
Because O, g,

(2), they get same solution

VK = VP
VyK = VyP
VK = VP should be satisfied.

However, there is no such reduced model, if
there is any, it is the rigorous model itself. Therefore
optimization strategies using reduced models always
have the possibility of getting suboptimal point.
(if o values are calculated from a process optimization

problem, it can be express as follows

(P2) Min D(xy)

st g(xy) < 0

hix,y) = y - Wxy) = 0

where x: decision variable vector
y: tear variable vector

W: calculated tear stream varable vector

When a process optimization problem is treated
with the Sequential Module Based Approach or the
Two-Tier Approach, the tear stream connecting
equation stands for all of the equality constraints
(process modeling equations). Objective function is a
negative function of x,y. So the value of objective
function value may not be accurate if the reduced
model is used. KKT conditions is applied in three
cases rigorous models, reduced models, rigorous
model for design variables and reduce model for state

variables which are used in (p2) as followed,

First case
V2, Ve Vb1 (U
_ * =0 3)
Vy@, Vyg Vyhr A%
Second case
v D, Ve Yoy U
+ =0 (4)
V.2, Ve v dly
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Third case
ngr vxg Vxhr U
+ =0 (5)
V. Vyg Vi \%

Equation (4) and (5) do not exactly coincide with
(3). It is well known that in the chemical processes
VD vary drastically with the characteristics of design
variables. In the Modified Jacobian Strategy, V.,
V.h are used with V y® and Vyh' are the remained
differences. However, the objective function is weak
related with the tear stream variables. Hence V Y®
have small value and state variables that are bound
to h=0 and tear stream converges, the convergence
of optimization is not influenced greatly by V ),@
al.[18],

Trevino-Rozano[10] developed reduced models for

Boston, et Jiraphongphan[15], and
chemical processes and proved that they provide
Vyh accurate enough to converge process simulation.
In this study these models are used. Through all these
facts it is expected that by getting gradients for design
variables based on rigorous models optimal solution
is obtained with small amount of computation.

In the chemical process of optimization, the
importance of design variables appears in the
Successive Quadratic Programming algorithm. After
Quadratic approximation of (p2), the elimination of

equality constraints h(8x,8y) results in

3) Min  q"sx + 1/2 dxTHdx

st gdx) < 0

Of course, the effects of V&, V ps, Vh

S Vyh, are
included in q and H. After getting new x from
(p3) with the QP

calculated from linearized equality constraints. Though

solver, the new y which is
all other effects are combined the new values of the
design variables are decided first and then those of
the tear stream variables are decided. This sequence
is very important in process optimization. This
property is shown clearly in the results of Trevino-
Rozano[10], Biegler[22] and Jiraphongphan[15]’s work
of optimizing Flash system.

From all these reasons Modified Jacobian Strategy
developed in this study is expected to be accurate
and time saving. It is proved with case studies, The
structure of Modified Jacobian Strategy is shown in
Fig. 4.
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Fig. 4  Algorithm Structure of Proposed Strategy

4. Performance Prediction of Modified Jacobian
Strategy(MJS)

The performance of MJS can be predicted as

follows. Consequently, the performance of a
optimization strategy is decided by the number of

rigorous flowsheet iteration.

I. SMIPA(Sequential Modular Infeasible Path
Approach) : Representative one of
Sequential Module Based Approach

Total number of rigorous flowsheet iteration

= Ny + (N, + N, + N, + N) * N;
where N, = the number of rigorous flowsheet

iteration before starting

optimization step

N, : the number of rigorous flowsheet iteration
between optimization iterations

N, : the number of tear variables
(component + 1)

N, : the number of design variables

N, : the number of rigorous flowsheet iteration
for line search

N, : total number of optimization iteration.

II. MJS (Modified Jacobian Strategy)

Total number of rigorous flowsheet iteration
= N, + (N, + N, + N) * N

init
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Usually the number of tear variables is larger than
that of‘thc design variables, so the performance of
MJS is better than SMIPA. For example, for the case
of 5 design variables, 5 components system which

converge with 10 iterations.

SMIPA 2+ (1 +6+5+1)*10 132
MIJS 2+ (1 +5+1)*10 72

As shown above, MIS is better than SMIPA by 132/
72 times. What should be focused is that in this case
the number of tear variables is equals to that of
design variables. However, usually one is larger than

the other.
5 . Case study

For example, Biegler et al.[20] used the process
in Fig.5 first and many researchers followed. At the
below of Fig. 5, FBD (Function Block Diagram) and
the location of the optimizer are represented. The

optimization problem of this process is as follows.
overhead

feed

100 F
150 psia

recycle

Components Average Flow Rale

(1bmol /hr)

Propane 10

1-Butene 15

N-Butene 20

T-2-Butene 20

C-2-Bulene 20

Pentane 10
3

d

L N 2 Flash

.
Pump Split Optimizer

Fig. § . A Simple Flash Problem.

The objective function used above has no
economic meaning. It is only a discretionary nonlinear
function. For instance, Table 2 represents the results
of applications of SMIPA and MIJS to three cases
made by differentiating feed compositions. Table 2
is converted to figures as shown in Fig. 6-a-c. The
feed composition of case 1 is shown in Fig. 5 and
that of case 2 is 11, 16, 21, 19, 19, 14(lbmol/hr)



and that of case 3 is 9.8, 14.8, 19.8, 19.5, 19.5,
14.5(lbmol/hr). Though the differences of feed
composition are very small the shapes of the objective

function differ by its high nonlinearity.

Table 2 The Results of Three Cases

Sterategy Iteration  Pressure  Obj. Function
(psia)
1 18.00 -1.595
2 20.69 -0.8042
Sequential 3 21.69 -0.7018
Hodular 4 22.21 -0.6824
Approach 5 22.29 -0.6308
6 22.28 -0.6810
7 22.28 -0.6809
Case
1 1 18.00 -1.595
2 20.67 -0.8705
Modified 3 21.56 -0.7092
Jacobian 4 22.24 -0.6820
Approach b 22.39 -0.6797
6 22.36 -0.679%
7 22.36 -0.6799
1 18.00 15.742
2 11.68 19.167
3 13.83 19.364
Sequential 4 12.65 19.620
Hodular 5 12.44 19.602
Approach 6 12.46 19.60%
7 12.49 19.608
3 12.48 19.607
9 12.46 19.605
10 12.4 12.603
Case
2 1 18.00 15.742
2 11.66 19.15%
Modified 3 13.84 19.362
Jacobian 4 12.66 19.621
Approach 5 12.43 19.600
6 12.46 19.604
7 12.47 12.606
1 20.00 -2.338
2 21,93 -1.878
3 23.62 -1.704
4 24.62 -1.668
Senquential 5 25.01 -1.664
Modular 6 24.95 -1.664
Approach 7 24.99 -1.664
8 4.9 -1.664
9 24.95 -1.664
10 24.95 -1.664
11 24.95 -1.664
Case
3 1 20.00 -2.338
2 21.93 -1.8719
3 23.38 -1.719
4 24.61 -1.669
5 25.14 -1.664
6 25.01 -1.664
Hodified 7 25.13 -1.664
Jacabian 8 24.98 -1.664
Approach 9 25.04 -1.664
10 25.07 -1.664
11 25.01 -1.664
12 25.08 -1.664
13 25.03 -1.664
L} 25.03 -1.664
15 25.05 ~1.664
16 25.05 -1.664

From Table 2 and Fig. 6 it is proved that MJS
developed in this study obtains accurate solutions and
nearly same path of convergence with SMIPA. In Fig.
7 representing the shape of objective function
according to design variable that of case 3 is appeared
to be plat though those of case 1,2 are not plat.
This is thought to be the reason why the result of
case 3 by MIS was a little bad compared to the
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Objective 6. Conclusion
function

E‘gj So to satisfy the accuracy of the detailed solution
:;j and reduction of the amount of computation, MIJS
Ea (Modified  Jacobian  Strategy) integrating the
S characteristics of Sequentail Module Based Approach
E‘}%E and Two-Tier Approach is developed. MIS is proved
e to be accurate and efficient by the case studies in
E‘:ZE spite of using a reduced model by part.

:;:1 Another characteristic of MJS is that if a problem
S — is defined relative performance to other strategies can

0 W i n 26 » 3 »

be expected and the expectation is proved to be

Pressure(psia)

accurate by case studies. Therefore, according to the
Fig. 7 Variation of Objective Function -- Case 3

given optimization problem the applicability of MIS

can be evaluated previously. In some cases, it is
Table 3 shows the results of comparisons of

performances between SMIPA and MJS for the above-
mentioned three cases. Table 4 shows the results of
comparison between SMIPA and R/S Method by
Ganesh[12] and Restart Method by Trevino (Complete Acknowledgement
Rigorous Model means SMIPA). Through relative
comparison with SMIPA, that is through the
comparisons between Table 3, they are different from

those of Table 4. It is because of the different

possible with little modification to lead the given
optimization problem to be solved very efficiently by
using MIJS.

The authors express their deep appreciation for
the financial support of YUKONG Ltd.

NOMENCLATURE
methods of thermodynamic properties and equilibrium

calculation were used. Table 4 is the result of an
ideal method and Table 3 is the result of the RKS

method. However, because feeds and operating

g : inequality constraint
h : equality constraint
K : simplified model

conditions are same, the results of relative comparis . . . . .
’ f parison Ninit : number of initial rigorous flowsheet iteration

are not influenced by the diffe R . . .
n 4 differences N1 : number of rigorous flowsheet iteration for each
optimization iteration

N2 : number of tear variables (number of components+1)

Table 3 Comparison between SHIPA and MIS N3 : number of decisi()n vanables
N4 : number of rigorous flowsheet iteration for line search
Number of Number of Value of Value of .. . ) .
Optimization | Optimization | Flousheet | Decision Objective N5 : number of total optimization iteration
case Strategy Iteration Iteration variable(psia) [ Function
SHIPA 7 73 22.28 -0.6809 P : Rigorous model
1 -
s 7 3 22.3 -0.6799 U,V,t : multipliers
. s by 103 2.4 12.603 W : calculated tear stream variable
s 7 3 12.47 12.606 . X
x : decision variable vector
SHIPA 1 113 24.95 -1.664
3 . : :
s " ™ 5.0 L664 y : tear variable( state variable ) vector
o : values calculated by independent routine
Table 4 The results reported by Ganesh et. al.(73) B ¢ parameters of Slmphﬁed model
vy : variables based on data base
(A} Decision Objective . 5 i 3
Procedure ( sec ) Variable function I objectxve function
Complete rigoraus model 232 18.96 3.66289
Complete simplified model | 29 23.79 4.87575
ws algorithm 184 18.99 3.66308
Restart method 193 L 19.02 3.66337
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