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This paper deals with the control of system with controlled jump Markov disturbances.
A such formulation was used by Boukas to model the planning production and main-
tenance of a FMS with failure machines. The optimal control problem of systems with
controlled jumnp Markov process is addressed. This problem describes the planning pro-
duction and preventive maintenance of production systems. The optimality conditions
in both cases finite and infinite horizon, are derived. A numerical example is presented

to validate the proposed results.

1. Introduction

The primary aim of control theory is to develop mathe-
matical models and algorithms for the design of complex
dynamic systems. The goal of design is to realize a de-
sired system function within the constraints imposed by
nature, economics, and the current state of technology.
In general, the function of control system is to maintain
a given sct of variables prescribed bounds. The neces-
sity for control arises from the fact that in operation a
physical system is usually subject to perturbations which
cannot be exactly predicted, and thus corrected for, in ad-
vance. For this reason, the presence of chance phenomena
imposes a basic constraint on system performance, and it
is thus appropriate to investigate control processes with
the aid of stochastic models.

This paper deals with a general class of piecewise de-
terministic control systems that encompasses the flexi-
ble manufacturing systems (FMS) flow control as well as
other related models. This class of systems is also known
in the litterature as system with jump disturbances.

Krasovskit and Lidski [1961] where the first to study the
optimal control problem of systems with jump Markov
disturbances. Rishel [1975] has developed a rigorous con-
tinuous time dynamic programming approach.

The used Markov process by Krasovskii and Lidski or
Rishel to model the disturbances, was not controlled and
the rates where supposed to be constant. This formalism
has been used to model the problem of control production
of the flexible manufacturing systems (see. Olsder and
Suri (1980}, Kimemia and Gershwin [1983], and Akella
and Kumar [1986]).

The aim of this paper consists to extend the formalism
used by Rishel or Krasovskii and Lidski. The extension
stems the facts that the jump Markov disturbances are
controlled, and also from the discontinuities in the system
trajectory (of the continuous state).

This extension was motivated by the optimal control prob-
lem of the planning production and preventive mainte-
nance of a FMS [see. Boukas [1987] or Boukas and Haurie
[1988]).

The paper is organized as follows: In section 2, we give
the formulation of the optimal control problem. In sec-
tion 3, we develop the optimality conditions under some
appropriate assumptions. In section 4, we use these con-
ditions to present some numerical results with a sample
systems producing one product.

2. Optimal control problem

Consider a system described by the state equations:

Vi€ [tnytngr)  (2.1)
n=01,2... (2.2)

#(t) = FEO(0), u(t)),
2(tn) = ¢°(2(47)),

In (2.1), ¢ = (¢(t) : t > 0) is a finite state controlled
Markov process and the derivatives changes from f Blz,u
,t) to f%'(z,u,t) as ((t) jumps from § to 8. This pro-
cess is defined by the jump rates ¢(f,z,u), 8 € E, z €
R?, u(.) € U(B), and the transition probabilities 7(3'|3, =
,u),B,8 € E,z € R?, u(.) € U(B). The set E is as-
sumed to be finite, t, (random variable) is the time of
the n** jump of the process ¢ which takes its values in E.

At a jump time t,, the state z is reset at a value 2(t,)
defined by Eq. (2.2) where g#(.) : R? > RR” is, for any
value 8 € E, a given function.

This description of the system dynamics generalizes the
control framework already studied in depth by Rishel
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[1975]. The generalisation stems from the fact that the
Jump Markov distrubances are controlled, and also from
the discontinuities in the z-trajectory generated by Eq.
(2.2).

Remark 3.1: The reader will easily check that this class
of system encompass the FMS model described in Boukas
and Haurie [1988].

Remark 3.2: The ¢ process could be replaced by a more
general controlled jump process, with a larger memory,
as in Rishel [1977]. We have retained this description for
the state of simplicity in the exposition.

Tle control constraint set U(f3) is a closed subset of RY,
and for each 8 € E, f7(.,.): R? x IR? = IR7? is bounded
continmously differentiable function with bounded partial
derivatives in z,

Let ¢ be a class of control functions ug(z,t), with values
m U(73) defined on E x R? x IR, called the class of admis-
sible policies. The control function ug(z,t) is supposed to
plecewise continuous in ¢ and continuously differentiable
with bounded partial derivatives in z. The continuous
differentiability assumption is a severe restriction on the
class of optimization problems considered, but it is the
assumption which allows th simpler exposition that will
be given. We seek a control law u in I/ which minimizes
the conditionnal expectation:

T
Eu{/0 PP (2, u)dt + ¢(2(T))|=(0) = 2,

¢(0) = B} (2.3)

where p > 0 is a continuous discount rate, and ¢?(.,.) :
IR? x R — IR", @ € F is a family of cost rate functions,
satisfying the same assumptions as f7.

We now proceed to give a more precise definition of the
controlled stochastic process. Let (2, F) be a measure
space. We consider a function X (¢, w) defined as:

X:DxO— ExIR", DelR"

X(t,w) = (2(t,w), {(t,0)) (2.4)

which is measurable with respect to Bp x F.

Let Fy = 0{X(s,.) : s <t} be the o-field generated by
the past observations of X up to time t. we now assume
the following:

Assumption 1: The behavior of the system under an
admissible policy u € U is completely described by a
probability measure P, on the (Q, ). Thus the process

X =(X(t,.),F,P,) teD

1s well defined.

For a given w €  with z(0,w) = 2% and ¢(0,w) = B,

given, we define:

ti(w) =inf{t > 0:((t,w)# fHo}

(2.5
Bi(w) = ((t1{w),w) 2

(=]
St
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tag1(w) = inf{t > ta(w) : ((t,w) # ((tn,w)} (2.7)
ﬁn-}-l(w) = ((tn+1(w)1w) (28)

Assumption 2: For any admissible policy u € U, and
almost any w € 2, there exists a finite number of jump
times t,(w) on any bounded interval [0,T},t > 0. Thus
the function X, (¢, w) == ((u(t,w), 24(2,w)) satisfy:

Cu{0,w) = fo (2.9)
zo(t,w) =2 + /(; fﬁ"(zu(s,w),uﬂ"(z(s,w)))ds

vt € [0, 11 (w)], (2.10)
Cu(t,wj = Ba(w) (2.11)

t
c(t,0) = PP (1 (@), ) + / 5 2 (5,w),

uPo(2(s,w)))ds, Yt € [0, 1, (w)], (2.12)

Assumption 3: For any admissible policy u € U, we
have:

Pyltass € [t,t +dt]ltnss > ta, ((t) = Ba, 2(2) = 2]

= (B, 2,47 (2))dt + o(dt) (2.13)
Pu[C(t) = Brttltats = 4,C(E7) = Bn, 2(t7) = 2]
= 7(Bn11Bas z,u) (2.14)

Optimality conditions

Given the assumption of the section 2., the problem con-
sists to establish the opptimnality conditions for the the
optimal control problem in finite and infinite horizon. For
a control u = (ug(z,t) € U, let 28(s; 1, 2) denote the value
of the solution of the system (2.1)-(2.2) at time s.

3.1 Finite horizon

In this section, we study the optimal control problem in
finite horizon with a terminal cost. Then we use these
results to establish the optimality conditions to the opti-
mization problem with infinite horizon.

For any (t,z) € [0,7] x R" define the value function
v#(z, t) associated to the control law ug(z,t) taking value

in U(B) by:

T
P (z,t) EU{/z e PP (2, u)dt + ¢(2(T))]2(0) = 2,

((0) = B}

3.1.1 Terminal cost

Let us now consider the case where ¢(.) = 0 for all
B € E. This class of optimization problem is always en-
countered in control applications. It consists to penalize
only the final state of the dynamic system.



Theorem 1. For each admissible control law ug(z,t)

withvalue in U(B), the value function v#(z,t) satisfies
the integral equation:

T
q

o8 (2,8) = (e (Tt 2)) - / (B, 2%(s:1,2),

T
@A+ T ([ as,

B'#8,8€E 71
2 (s31,2),up(2#(s), $))0” (2 (5), 8))(B, 2, u)ds)
: (3.1)
Proof: see Boukas [1987}

Theorem 2. For the optimal control law ug(z,t) with
value in U(B), the value function v#(z,t) satisfy:

1. the system of partial differential equations:

vi(z,t) + Z vl (2,0 ff (2(2), up(z, 1))

— a8,z up(x ) (2 )+ Y q(Byzu)
B'€E—~{8}
v? (g7 (2(t), B))7(8'18,2,u) = OVB € E (3.2)

2. the boundary conditions:

v¥(2,T) = ¢(=(T)) (33)

Proof: see Boukas [1987].

Remark To establish the Rishel’s optimality conditions,
recall that we have:

Mg == D s (3.4)
seE~(8}
A

w(.) = £B (3.5)

ZﬂeE—{ﬂ) /\ﬂﬂ'

By replacing in our optimality conditions we obtain the
Rishel’s conditions.

Theorem 3. Let h%(2,t), 3 € E be bounded continu-

ous functions defined on {Ty,T] x IR™ such that h?(z,t)
is continuously differentiable in z and piecewise continu-
ously differentiable in ¢.

Re(z,4) + z hE (2, 4) fP (2(1),up(2, 1))

-q(ﬂ,z,ug(z,t))hﬂ(z,t)+ ‘I(ﬁ»z7u)

2

B'€E—{p}
h¥ (g7 (2(1), 8))n(8'|8, z,u) > 0, VB € E (3.6)

and h%(z,T) < 0
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Then
R#(2,T) £ 0 on [Ty, T] x R
Proof. see Boukas [1987)

The previous severe assumptions on the class control pol-
icy will produce a necessary and sufficient optimality con-
ditions. Without these assumptions the optimiality con-
ditions will be become only sufficient.

Theorem 4. A necessary and sufficient condition that a
control ug(z,t) € U(B) be optimum is that for each 8 €

E, its performance function v#(z,t) = By {¢(=(T))|z(t) =
z,((t) = B} satisfy the partial differential equation:

i I - 8
AU ,g;v?‘(z’t)f‘ (2(), up(z, 1)

— (B, 2 up(z )P (2, )+ S q(B,z,u)
B'€E{B}

v? (g7 (2(t), B))n(B'18, z,u)} = 0P (2, )+

S8 () (2(t), up(2, 1)) — 4B, 2, up(z,1))

=1

Plzt)+ Y q(Bz,u” (67 (2(t), 8)
B'eE—{4}
m(3'|B,2,u) =0,V € E (3.7)
2. the boundary conditions:
v (2,T) = $(«(T)) (3.8)

Proof. see Boukas [1987].
3.1.2 Cost defined by an integrale

This class of optimization problem can formulated in the
optimization problem of the sub-section 3.1.1.

Theorem 5. A necessary and sufficient condition that a
control ug(z,t) € U(B) be optimum is that for each 8 €
E, its performance function v#(z,t) = E,{ fnT ePteB(z(t),
u(t))dt|z(t) = z,((t) = B} satisfy the partial differential
equation:
8 - : 8 B
v¥(z,1) = min ,u) 4+ 2,1+
PPty = | min (Fe,) +0f (s, 0)
> vhEfE (=), up(2,1)) = (B2, up(z, 1)

i=1

)+ Y q(Bozup? (67 (2(t), BY)
p'€E—{F}
(B'18,z,u)}, VBEE (3.9)
2. the boundary conditions:
v (2,T) = ¢(2(T)) (3.10)

Proof. see Boukas [1987).



3.2 Optimization problem over infinite horizon

Let now ¢ — oo, and suppose that the final cost converges
to 0 as T — oo. Let U be the set of admissible laws
with value in U7(3) with the same assumption in previous
section. This class If is such that for each 7, the mapping
ug(.) : z — U(B) is sufficiently smooth. Thus for each
control law u € U is associated a probability measure P,
on (Q.F) such that the process (z,() is well defined and
the cost (3.3) if finite.

Theorem 6. A necessary and sufficient condition that
a control ug(z) € U(J3) be optimum is that for each § €

E its performance function »#(z) = Eu{fooo e=PteP( (1),
u{t))dt|z(t) = z,((t) = 3} satisfy the partial differential

equation:

min

() =
w()EU(H)

{P(zu) + ) vl ()P (2(1), up(2)
=1

2.

B EE~{9)
o7 (g% (2(t), B Na(B'15, 2, u) VB € E

—q(B,z,ug(2)=) + (B, 2 u)

(3.11)

Proof. see Boukas [1987].
4. A numerical results

To illustrate the application of the previous results, let us
consider a sample system which produce a single product.
Such problem have been considered by many authors (see
Akella and Kumar {1986], Sharifnia 1988}, Bielecki and
Kumar [1987] Malhamé and Boukas [1989]).

4.1 A model

Let u(t) be the production rate of the work station at
time t. Let Agg(a,v) be the transition rate from state
3 to state B’ for the work station at time t. Let d be a
given demand rate for the considered part.

We consider in this example that the aging of the work
station is proportional to the production of this work
station at time . Thus the cumulative age is the solution
of the following differential equation

i‘;—gﬁ =u(t), Vt>T (4.1)
ao(T) =0, (4.2)

where T is the last restart time of the work station.

We assume in this example, that the intervention restores
the age at a zero value.

The state equation of the inventory level is given by

gﬁd@ = u(t) - d, (4.3)
z(0) = 20, (4.4)

where ¢ is a given initial inventory
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The operational state of the system is described by a
controlled jump process with 3 possible states, indexed
over the set F = {1,2,3}.

The cost rate ¥#(a,z,7) is given by the following expres-
sion

VPa,z,m)=cTat +czm +c%, VBeEE  (45)
where:
¢t, ¢~ are positive constants, and z*, 7, and ¢? are

defined by:

+

2 = maz(0, z);

z~ = maz(0, ~z);

o = [er Ind{¢(t) = 2} + e2 Ind{((8) = 3}],
with

1 : cost rate (positive constant) applying to machine’s
repair activity;

¢y : cost rate (positive constaut) applying to machine’s
preventive maintenance activity.

Applying the results of Boukas [1987] or Boukas and Hau-
rie [1988] concerning the approximation technique for the
numerical solution on the DP equation, we obtain the
corresponding discrete Dynamic Programming equation.

$P(z, ) N 1
gt et

z,m) e
(3P mVPE + Y P8,
7eG B eE~{8}
B, WV (ela, 8, 2)]},

VBeE, VzeG

B2y = min
Vile) = WIEIH(ﬂ){QQ(z,Tr)[l +

(4.6)

where:
G:

is a finite grid;

TI(B3) : control constraint set;

Qi (z,7) = —qgp(z,7) +
Fii('zv”)
RiQ(z,7)
qpp(z,m)

Q5 (z,7)

Einzl ]Fi(za 7")‘
h.

p’:(z, zt eh,m) =
Phl(z.8,8',7) =

with
F(z,7%) = maz(0, Fi(z,m)
F7(z,m) = maz(0, - Fi(z,7))

For a given policy 7, we introduce the operators T and
T* acting on V,, = (Vhﬂ)ﬂeg, and defined by



Tr("h)(ﬂy Z) p— ____?i(j’-lrl——-—— -+ _____1___-—-
Qe+ gt MY T

DI ACER/{CORs DO ACH:E

2 eG g eE-{8}

g, WV (e(a,8),2));
4.7)

T (V)8 2) = min TV} (48)

€]

where the constraint set TI(B) is defined for each 3 by:

mazr }
’

H(1)={"=(u,v):0SuSu'"",0§v§v
n(2) = 1I(3) = {(0,0)}-

The discrete problem satisfies the properties guarantee-
ing the existence of a solution (see Boukas and Haurie
Ll988] or Boukas [1987)). This solution may be obtained

y a successive approximation method (for a recent pre-

sentation of the method see Bertsekas [1987]).

The successive approximation algorithm operates as fol-
lows:

For a given finite difference interval h:

step 1 : Choose ¢ € Ry,
set: n:=1,and (Vf)“(z) =0,V € E,Vz €
G
step 2+ set (V)" 7(2):= (Vh™(2), VB € E,Vz €G
step 3 : determine the policy n™ such that:
Ten (VR X(B, 2) = T*(Vi)(B, 2), VB € E,Vz €
G
step 4 : Test:
g o= mip{(VF)"(2) — ()" (=)}
2€G
ci= ,?gc{(v,f’)"(z) — (V" (=)}
1€G
P
min 1 _ P
__P
Cmaz +— 1— p_Q

if |maz — Cmin] S € then stop =* = n"; else

let n = n + 1, and go the step 2.
4.2 The data ‘

For our work station system we have used the following
data:

1. control constraints: u € [0,.19], v € [0,6107%]

2. demand rate: d = .18

3. jump rates:

Aiz(a,v) = .02(1 — e~8%107"a) represents the transition

rate from the state “operational” to the state “failure”,
of the machine;
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A1(a,v) =7.33 10~2 represents the transition rate from

the state “failure” to the state “operational”, of the ma-
chine;
Aai(a,v) = 1.46% 10~2 represents the transition rate from

the state “preventive maintenance” to the state “opera-
tional”, of the machine;

4. discount rate: p = .01

5. instantaneous cost: ¢ (a,z,7) = ctat + 727 +

?, VBeE )
where the coefficients are given in Table 1.

[«
l_i1

Table 1:

Cost rates.
4.3 Implementation of the numerical method

The implementation of the approximation technique ne-
cessitates the use of a finite grid G. one has thus to
impose some boundary conditions to describe the behav-
ior of the system at the border of G. These boundary
conditions are described below and correspond to an ad-
ditional approximation of the original problem. However
it is felt that these boundary conditions are realistic and
that the influence of this approximation will be negligi-
ble. The grid G associated with our example is a subset of
IR2. For a given finite difference interval h, with (n; X n2)
points, this grid is defined by:

G ={z' e R* i=(i1,i2)|
2 =204 (i —Dhr 2} =0, 2" = 200,11 € {1---m}
z.:; =zg+(i2—1)h2:zg = —80, z;2 = 80,12 € {1-- n3}}

To approximate the solution of the infinite horizon prob-
lem, we impose some boundary conditions. For each
B € E, when a component of z reaches its boundary,
the control is imposed. This control forces the system to
jump with probability one to a specified state.

Note that the boundary conditions imposed below are
not the outcome of the optimization problem, and if the
grid is large enough, they do not affect the solution.

We bave used for our work station example, the following
boundary conditions.

A. The work station is operational:

1. zgt) is at its lower bound:

- if the age of the work station is not at its upper bound,
force this work station to produce with its maximum
production rate.

- if the age of the work station is at its upper bound,
send this work station to preventive maintenance.

2. z(t) is at its upper bound:
- if the age of the work station is not at its upper bound,
force this work station not to produce.
- if the age of the work station is at its upper bound,
send this work station to preventive maintenance.

3. xz(t) is neither at its upper bound nor its lower bound:

- if the age of the work station is at its upper bound,
send this work station to preventive maintenance.



if the age of the work station is neither at its upper
bound nor at its lower bound use the previous equa-
tions to determinate the control law.

B. work station is not operational:
In this case the constraint associated control set is empty.
4.4 Results

The successive approximation algorithm has been imple-
mented to approximate the solution of the work station
system with the data and grid G presented at sub-sections
4.2 and 4.3. The grid considered has (41 x 41 x 3) points.
The results obtained in the case when the work station
is operationnal are presented in Figures 4.1 to 4.3.

From the results we can conclude the following:
A. Control policy

When the stock level is negative which represents a back-
log, operational work station is forced to produce at its
maximum production rate even if it is aged, and no pre-
ventive maintenance action is permitted.

When the stock level is positive which represents a sur-
plus, the preventive maintenance action of the opera-
tional work station can be considered. This action will
depend on the age of this work station.

From these results, we state that the production rate con-
trol is similar to Akella and Kumar's policy {1986]. The
preventive maintenance rate is a function of the age of
the work station. The preventive maintenance activity
in considered only if the stock level is positive.

B. Value function V

Figure 4.3 show the evolution of the value function V vs
the age a of the work station and the stock level z in each
discrete system state. This figure indicates that the form
of value function can be approximated by a quadratic
form. This confirms the assumption used by the re-
searchers of the MIT. Therefore the method used first
by Kimemia and Gershwin [1983], could also be adopted

in our case.

5. Conclusion

We have formulated the optimal control of the produc-
tion and preventive maintenance rates in the case of a
simple system. The optimality conditions are established
in both cases: finite and infinite horizon. These optimality
conditions are translated by a hyperbolic partial differen-
tial system. To compute the solution of this system in the
case of tthe infinite horizon, we have proposed an heuris-
tic approach. A validation of our results is illustrated by
the numerical results. Concerning, the production rate,
our results are similar to those obtained by Akella and
Kumar [1986]. The preventive maintenance acitivity is a
function of the age of the work station and the level of
the stock.
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