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Iterative Adaptive Control of Partially Known System Under Tight Servo Constraints
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A new sufficient condition for the convergency of an iterative adaptive control algorithm
is presented, in which a parameter estimator of the system together with an inverse system
model to generate the control signal at each iteration. Also the result is extended to
discrete time domain and a similar sufficient condition is derived.

1. Introduction

Adaptive techniques have been used when the plant
dynamics are not fully known, but the output trajectory is
not specified.

The iterative control method, which was proposed by
Uchiyama[1] and later elaborated as a more formal theory
by Arimoto et al[2], also has been receving a lot of
attention as a means of controlling uncertain dynamic SYs-
tems.  The proposed simple algorithm which is called
"Betterment’ process is of the form

W (8) = w, (1) + [T@) O1[e] (1) )T , 0=t <T

here u,(¢) is the control at k~th iteration and e, (1)
denotes the output error. This control method was reported
to be applicable, for example, for controlling of a non-
linear robot manipulator with repetitive tasks. In Arimoto
et al[2] the iterative control strategy was proved to be
convergent if the controller gain I'(r) is properly chosen so
that an inequality relation involving system matrices h()ld_s.
Thus their approach may be unsuccessful unless certain
specific knowledge about the system dynamics is given.
We may say that the use of identical gain function I'(r) at
each itcration implies that the ’Betterment’ process itself is
not ’adaptive’ and that since any accepted knowledge is
contained only in u,(t), thc itcrative algorithm can be
casily disturbed by external noise. In fact, when we use the
iterative algorithm, we must perform different trials for
any new trajectory and their algorithm is sensitive to exter-
nal noise. i

Oh et al.[3] proposed a new iterative control method
for a class of lincar periodic continuous systems, in which
the term corresponding to the controller gain [I'(1) 0] is
determined adaptively in conjunction with the built-in sys-
tcm parameter estimator. Their method, in which the
accepted knowledge is distributed both to u (t) and to
{T(:) 0)=[B,(r) —B,(1)A,(r)], is not only efficient in
convergence but also robust to disturbances in comparison
with existing methods inj2][5]. A drawback of the method
in [3] is, however, that the inequality checking condition is
expressed in terms of linear operator norm. As a conse-
quence, it is not easy to examine if the system and the
estimatated system satisfy the sufficient condition and is
not obvious how the method can be applied to a class of
discrete-time dynamic systems.
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In this paper, a refined form of a sufficient condition
for convergency is provided when adaptive iterative control

method is adopted as in [3]. The condition is more
specific than the result in [3] and expressed in terms of
system matrix and estimated system matrix. This result
enables us to know if the system under control satisfies the
sufficient condition and the assumption is weaker than that
in [3]. Also a discrete-time version of the algorithm for
digital control of a class of linear periodic discrete system
as well.

In the sequel, given a matrix B, BT denotes the tran-
spose of B and B” implies the generalized inverse of B,
respectively{7]. For an »n ~dimensional vector x, |l
dcnotgs the Euclidean norm and | llo implies the sup
normii.e.,

e lo = max |x'| when x = (x1,~-~,x")
1<i=<n

For an nxr matrix G whose entries are defined as gi/,

r
IG o = max {3 g}
Isi<n ,_
i=1
Also given a time function # 0,7 - R", let

Oy = sup e ™ k@),
1€[0,T]

2. lterative Adaptive Control Method for a Class of Linear
Periodic Continuous Systems

In this section, a new sufficient condition for conver-
gency is discussed when the algorithm in [3] is adopted.
Thus firstly the same problem, parameter estimator and
iterative control algorithm are presented as those in [3]
and then the convergency is shown.

Consider the linear continuous periodic system
described by

£(1) = A()x (1) + B(r)u(r) )

x(0) = ¢° @

where x and u are an nx1 state vector and mx1 control
vector, respectively. The nxn matrix function A (#) and the
nxm matrix function B(r) are assumed to contain unk-
nown parameters but are known to be continuous and
periodic with period T such that



A(+T) = A(1)

B(1+T) = B(1)
Now consider the following problem(P1)
Problem(P1) :
Let x,(r) , 0<t<T, denote the given desired state trajec-
tory. Let € >0 be a given tolerance bound. Find a con-
trol function u(r) , 0<r<T, such that the corresponding

state trajectory x (1) of the linear system in (1) with initial
condition (2) satisfies

pe(t) = Ie(t) = xg()lo=e , 0=t =<T

3

In order to solve the problem(P1) stated above we
adopt parameter estimator and the iterative control algo-
rithm proposed by Oh et-al.[3] which are given below.

Parameter Estimator :
Let the matrices A(r) and B(r) in (1) be written as

al() b(1)

A(t) = and B(r) =

a™ (1) b (1)
Define 1x(n +m) vectors 8'(r) and (t) be as
07 () = [a' (1) b'(0)]
w(r) = [T @) T (OF
For each fixed time 7€[0,T], let
(@) = [ OxAE), " @]
y(@) = x(1)
such that the ith component of y(7) is given by
yiE) = £@), fori = 12,n
Then the system in (1) can be described by
Y@y = 6 @), fori = 123,

Let the estimated parameter vector ()é(l) in the kth opera-
tion be given by

“

B (1)=bl_ ()+FL O —-8]_ )] (5)
where
i St (O ()
Fi@) = 6
—— iy ()8} _q () (F)
ap(?)
and

St O OIS, (1)

Si() = Sp_, (1)

iy (1S -y (0, ()
otk(f)
Algorithm : .
Let the initial condition uy(r) , 0=t <T , be given as an
m-vector continuous function. Also let the initial modeled
system matrices Ay(r) and By(r) , 0<t<T , be given as
continuous matrices on [0,T]. Let

e (t) = x,(1) ~ x,(1), 0<r<T (8)
i (1) = B (Dlé, (1) — A)e ()] ©
w1 (0) = (1) + () (10)

The structure of the above algorithm is schematically
shown in Fig.1 and is shown to be convergent in the fol-
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lowing statement.
Theorem 1

Consider the linear periodically time-varying continuous
system in eqn.(1). If the system in eqn.(1) is totally stable
and if the estimated system given in eqn.(5)7(7) satisfies

W= B (Bl < 1 (11)

then the adaptive %)terative controller in eqn.(8)7(10) with
x,(0) = x,(0) = & for k=0,1,, yields

lim e, ()l = 0

Proof of Theoreml
Let u,(t) be a control input that yields the desired output
state trajectory x,(¢). It follows from eqns. (1),(8),(9),(10)

ug (1) = upq (1)

ug (1) = w (1) = B (O[é(1)=A,(1)e, (1)]

{1 =B, (1)B () uy ()= (D}~

B (A=A (OHxy () —x, (1)}

Computing the norms of both sides, we obtain,
g (1) =ty 4 1) o= =By (1)B () llolieg (1) =13, (1) o
+1B, (A ()~ A ()} hoolbt g (1) =24 ()l (13)

for all 1€[0,T]

If

(12)

Now, because x,(0) = x,(0) for all &, we have, for
1€[0,T],

fbey (t )_xk )l

<[ Ay ()= (Do
0

B (Miollity (1)~ it (M ocd (14)

Applying the Bellman-Gronwall lemmaf4], we obtain
|L\'d (t )——xk (r)"ooS

S Bk -, D€ Par (15)
9

for all 1€[0,T], where a=JA (r)lL,, , for all r¢[0,T]

Therefore, combining eqn.(13) and eqn.(15), we see

that,with Buy (¢)=u, (t)—u, (t)
183 4 3 () o<W =B (£ )B (1) loliSety (1) loo
+1IB," (A ()= Ay (D} o
J 18 )t (g€ s (16)
4]

Multiplying eqn.(16) by the positive function e ™, we have
e M By 4 1 () oo =BT (1B (1) oot ™ 180, (1)l
I O )~ A} e ™ J 18 ()l (4 o€ e

¢

for all 1€[0,T)
<W =B, (OB ()l ™ 10, (1)l
+1B, (KA ()= A (Do

bfe M1 (1) e @ TV Vd an
0



for all re[0,T], where b =B (1)ll,, for all 1€[0,T]

Therefore

IBtty  V =W =B ()8 (1) leoliBreg (V5 1B, (0 A (1)
: 1— {a-NT
A (O ——
A—a
From the assumption ||/ —Bk+(t)B(r)|]oo<1, we can choose
A>-0 large enough so that

W =B, (1B ()& 1B, (1 )A(r)

_a-Nr

B} 1
~A, (r)}lloo{TKl (19)

182, ()1l for A#a (18)

Thus, |I3u, (-)Il,~0 as k-oo.
By the definition of |-{l,, we have that

sup By (1) lloo<e™ I3uey ()1
1e[0,T]

Therefore,

sup |Buy (2)]l~0 as k—oo
1e[0,T)

which means that

u, (1)~uy (1) as k~oo on 1€[0,T]
Furthermore eqn.(10) implies

X, (t)~x,(t) as k~oo on 1€[0,T]

This completes the proof

Remark 1

Comparing the above Theoreml with Theoreml in Oh et
al[3], it is observed that the inequality relation eqn.(11) is
weaker and easier to check as in {2] and is related only to
input matrix. In [3], it is assumed that parameter estima-
tion scheme is convergent and as a result of the assump-
tion, it is argued the relation of the operator norms holds
the inequality. But from the eqn.(11) and in the process
of the proof of the above Thcoreml, the fact can be
known that even though the parameter estimation scheme
doesn’t converge to real parameter, the iterative control
algorithm converges. For example, A,(r) converges to
arbitrary bounded value and B, (r) converges any value
which holds eqn.(11).

Remark 2

If we set the output vector y(r)=1-x(z), then the order
difference between the input vector and the output vector is
1 and y(r)=x(@)=A@)x(@)+B()u(r). Thus B(r) is a
direct transmission term from u(t) to y(¢) . This observa-
tion is in agreement with the assertion made by Sugie et
al.[S], where they reported that direct trapsmission term
plays a crucial role in the error convergency proof.

Remark 3
Note that in compared above algorithm with Arimoto’s, we
can set

i (1) = [B,) (1) =B (A, ONel () ef)I"
in the above algorithm and

i (1) = [T() Ol[&() ef(OF

in Arimoto’s and thus know that B,'(:) plays the same
role as the gain T'(¢) and —B (1)A,(t) is zero in
Arimoto’s. In eqn.(16) if A, (r) equals to A(r), then the
second term of right haw.d side will disappear and particu-
larly in Arimoto’s this term appears always. Thus it can be
expected that if the parameter estimator is guatanted to be
convergent, then the above algorithm will be superior to
Arimoto’s in convergence speed. This obervation can
explain the Oh’s computer simulation results roughly.

3. Iterative Adaptive Control Method for a Class of Linear
Periodic Discrete Systems

In the previous section iterative control algorithm is
presented in continuous time domain as in {2]. Since each
iteration’s data are not memorized continuously, a practical
algorithm is implemented only for a finite number of
times. Thus the iterative control algorithm is discussed in
discrete time domain.

Consider the linear periodic discrete system described

by
x(i+1) = A@i)x () + B@i)u(i) (20)
x(0) = & 1)

where x, u, A(i) and B(i) are assumed to be the same
size as in Sec.2. and A(i) and B(i) are assumed to con-
tain uncertain parameters but are to be periodic such that

A(+N) = A(i)

B(i+N) = B(i)
Now consider the problem(P1) in discrete-time domain and
in order to solve the problem parameter estimator in [3] is
adopted but fixed time # is replaced to fixed time / and
8" (i) and (i) are similarly defined in terms of com-

ponents of eqn.(20) and the discrete iterative control algo-
rithm is given below.

Let
e, (i) = xy3(i) = x (i) , i=02, - N (22)
1, () = w (i) + [B1()
—B, (DA ()Ilef (i +1) e ()" (23)

The above algorithm is shown to be convergent in the fol-
lowing statement.

Theorem 2

Consider the linear periodically time-varying discrete sys-
tem in eqn.(20). If the system in eqn.(20) is totally stable
and if the estimated system satisfies the condition such that
eigenvalues of matrix /-8B, ({)B(i) are all in the unit
circle of the complex plane, then the iterative controller in
eqns.(22)°(23) with x,(0) = x,(0) = £ for k=01,
yields

L}im fley (Dl = 0

Proof of Theorem?2
Let u,(i) be a control input that yields the desired output
state trajectory x, (7). It follows from eqns. (20),(22),(23)

ug () = uy ()
= uy() = 1, (1) = B eg (i +1)=Ay (i), ()}
= uy ()= u (=B ( HA ()~ A (D)}e, ()
=B ()8 (i Yuy (1)1, (D)} (24)
Let 8u, (()=uy(i)—u, (i)
By 1 (1)=8u, (i)~ B, (WA () ~Ay (D )bey ()BT (1)B (i )0, (i)
=B, @)B ()ou, ())-B, ( HA ()4, (e, (i) (25)
Consider
e(k) = x,(i)~x,. (i)
= A(i=1)-A(1)B(0)8u, (0)+ - +B (i —1)du, (i —1) (26)
Thus
Bup41(1) = {1 =B (B ()ou, (1)~ B, (WA ~A, (i)
{AG=1)A(1)B (0)3u, (0)+ -
+B (i —1)8u, (i —1)} 27)
Expanding eqn.(27) from i =0 to i =N



Bug 41(0) = {1 —B; (0)B(0)}du, (0)
dug (1) = {1-B," (1)B(1)}ou, (1)
-B, (DA (1)~A, (1)}B (0)54, (0)

Bup (V) = {1 =B (V)B(V)ouy (N)~B,T (N (A (N)—A, (N))
{AV =1)A()B(0)8uy (0)+-+B (N —1)8u, (N —1)}
Rewrite above egns. in matrix eqn. form

du 1 (0)) [1-B©B©) 0 - 0 8u, (0)
0
duy 1 (N) * <o I-BSBW)| 184, (V)
(28)

whcg't;+ *  denotes nonzero matrix other than
1-B, ()B(i), i=0,+N

In eqn.(28), if eigenvalues of
1-B5(©B@O) 0 - 0

*

are all in the unit

0
* - x I-BT(N)BWN)

circle of the complex plane, then 8u,(i)-0 as
k—-OO,i =0,"',1V

1-B,7(0)B(0) 0 - 0
*
Since . - . is lower tri-
0
* - % I-B(N)B(N)

angular block matrix, the above condition is equivalent to
the  condition such that eigenvalues of
[-B,'(i)B(i),i=0,~N are all in the unit circle of the
complex plane.

Thus 3u, (i) - 0 as k - oo, i=0,N
Therefore from eqn.(26)

x (i) - xy(i) as k - o0, i=0,-N

This completes the proof.

Remark 4

It can be noted that B(i) is also a direct transmission ferm
from u(i) to y(i) and plays a crucial role in the error
convergency proof as in [6].
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4. Conclusions

A new sufficient condition for convergency is pro-
vided when adaptive iterative control method is adopted as
in [3]. Also a discrete-time version of the ?lgorithm for
digital control of a class of linear periodic discrete system
as well.

It can be observed the sufficient conditions are not
related to the matrices A{i{) and/or A(t) but to B(i)
and/or B(r).

REFERENCES

{1] M. Uchiyama, "Formulation of high-speed motion
pattern of a  mechanical arm by trial,"

Trans. Soc. Instrum. Contr. Eng., vol. 14, no 6, pp.
706-712, 1978

[2] S. Arimito, S. Kawamura and F. Miyazaki, "Bettering
Operation of Robots by Learning,”
J. of Robotic Syst., vol. 1, no. 2, 1984

[3] S.-R. Oh, Z. Bien, I. H. Suh, "An Iterative Learning
Control Method with Application for the Robot
Manipulator,” IEEE J. Robotics Automar., vol. 4,
no. 5, pp. 508-514, Oct. 1988

[4] V. Lakshmikantham and S. Leela,
Differential and Integral Inequalities, New York,
NY: Academic Press, 1969, vol. 1, pp. 37-41

[5] M. Togai and O. Yamano, "Analysis and Design of
an Optimal Control Scheme for Industrial Robots: A
Discrete  System Approach," in Proc. 24th IEEE
Conf. on Decision and Control (Ft. Lauderdale, FL,
Dec. 11-13, 1985), pp. 1399-1404

[6] T. Sugie and T. Ono, "On a learning control law,"
System and Control, vol. 31, no. 2, pp. 129-135,
1987

[7) S. Barnett, Matrices in Control Theory, New York,
NY: Van Nostrand Reinhold, 1971



Parazeter Esfimatst

Planc

o= AR, U)o+ B(T)

! Inverse System Model o
| r . — P
- S R L ST i (S)e. (t)] S !
] O] .3‘{_‘,3,‘((,] 8 (ziig, (r)-a (£)e, it)) :‘,.)_:[ —

Plant

{2y = Al0)x ) +B\:)ukqn:\

Inverse System Model

AT S I
.:)=‘akg‘z’3k?1\:); S 2 D iB)=A L (Be

= I [

i
Paramecer | Estimator

I’ A8y B (0

— e

{
i

v

Fig. 1. A schematic diagram of iterative adptive controller
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