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Abstract

In this paper we present initial convergence properties of
the Kalman filtering algorithm, we put an arbitrary small posi-
tive correlation matrix as an initial condition in the recursive al-
gorithm. This arbitrary small initial condition perturbs the Kal-
man filtering algorithm and may Jead to initial instability. We
derive a condition which insures the stable operation of the
Kalman filtering algorithm from the stochastic Lyapunov
difference equation.

1. Introduction

Recently many adaptive filtering techniques are being
realized by the advant of advances of digital technology in the
field of adaptive signal processing such as adaptive echo cancel-
lation, adaptive channel equalization, adaptive line enhance-
ment and adaptive speech processing. Among them the Kalman
filtering algorithm is the fastest converging optimal algorithm.
Gauss used the Kalman filtering algorithm for the first time in
the early nineteenth century. Since then the algorithm has been
widely used in various fields.

In order to initiate the Kalman filtering algorithm we as-
sign an initial condition which implies that the correlation ma-
trix should be strictly positive-definite. Otherwise, the algo-
rithm becomes singular in the initialization stage. During the
initiation stage we do not have sufficient information to deter-
mine the filter coefficients. The arbitrary small positive matrix
as an initial condition can be interpreted as some additive finite
variance noise signal to the Kalmar. filtering algorithm. This ini-
tial condition perturbs the Kalman filtering algorithm and some-
times leads to its initial instability. In order to insure the stable
operation of the algorithm in the initial stage, we need a condi-
tion for robustness of the Kalman filtering algorithm. Our aim
is to study golbal convergence and initial convergence behaviors
of the Kalman filtering algorithm.

The Kalman filtering algorithm can solve the determinis-
tic Wiener-Hopf equation in the optimal manner. The Kalman
filtering algorithm has many variations which are more numeri-
cally efficient in updating algorithms at every itcration such as
the fast Kalman algorithm, the fast transversal filter algorithm
and the recursive least-squares lattice algorithm. These algo-
rithms are utilizing a Toeplitz-like autocorrelation matrix pro-
perty and very efficient in computing the inverse of the auto-
correlation matrix in the recursive form. Their computational
complexity is of the order of G(M), where M is the number of
the adaptive filter taps. But their convergence properties are the
same since they are all the Kalman filtering algorithms.

2. Basic Results of the Kalman Filtering Algorithm
Now we review the Kalman filtering algorithm. Suppose

that d(i) is the desired response at time i, then the linear re-
gression model will be given as

M
d{i) = Y wey uli—k+1) + eqli) (2.1
k=1

where w(i), u(i-1), -, u{i—M +1) are prewindowed wide-
sense stationary input data, ie. u(i) = 0,i < 0. The w, are
unknown parameters and eq(i) represents the white measure-
ment error with zero mean and variance o2 The asterisk
denotes the complex conjugate. In the Katman filtering estima-

tion problem, we choose the tap weights wy, wy, C, Wy
which minimize the sum of error squares, for N> M
o 2
E(wy, =, wy) = 2, e 2.2
=t
where
M -
e(i) = d(i) — D we u(i—k+1) (2.3)
k=1

The optimal salution w7 = (W, Wy -, W) satisfies the

following Wiener-Hopf equation:

Utuw = Uty (2.4)
where
u(l) w(2) - - - u(N)
0 u(l) - - - u(N-1
U” - 0 PN . (2.5)
6 0 - u(N-M+1)

and vT = (d(1), d(2), - . d{N)), where H denotes the Her-
mitian. If the M xM matrix U0 is nonsingular, then the
least-squares estimate w becomes

w= (U¥uylutty (2.6)

This algorithm is very inefficient in computation. We now
derive the Klaman filtering algorithm in the recursive form.

Let
O(n) = UH (n)U (n) = g:lﬂ(i)gﬂ(i) @7
p(r) = Uln)v(n) = ﬁ}g(i)d‘m, (2.8)
where uT(i) = [u(i), u(i=1), -, u(i=-M+1)].
then
D(n) = O(n-1) + u(n)u’ (n) (2.9
p(n) = p(n-1) + u(n)d (n). (2.10)

Since p(n) = ®(n)Ww(n), we have the recursive algorithm from
the above equations:
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W(n) = w(n-1) + &~ (rn)u(n)ld(n)

- @ (- (m1". (2.11)

Now we define
k(n) = @ (n)u(n) (2.12)
afn) = d(n) ~ w(n-Du(n), (2.13)

v\fhere k(n) is the Kalman gain and o(r) is the a priori estima-
tion error.

_) .
@ '(n) can be obtained from the matrix inversion
lemma:

o (n)y= &l (n-1)
_ = Durm)u ()& (e 1)

1+ul(n)® Y(n-1)u(n) (214
Consequently we have the Kalman filtering algorithm:

wn)=wn-1) + @ Y(n)u(n)a'(n) (2.15)

o(n) = d(n) - W (n-Dun) (2.16)

o ny = & (n-1)
K S VG VRGO (il VI PR T
1+ 8" (m)d (n-Du(n) '
®(0) = 8/ (2.18)
#(0) =0, (2.19)

where & is a small positive number.
3. Initial Convergence Analysis of the Kalman Filtering
Algorithm
Next we study initial convergence properties of the Kal-

man, filtering algorithm. We define the a posteriori estimation
error such as

e(n) = d(n) - ' (nyu(n) (3.1

then we have the following lemma:

Lemma 1. The a posteriori estimation error e(n) has the
following relationship with the a priori estimation error
a(n):

e(n) = a(n)li - u" (M) (Wu(n)]
oln)
= . 3.2
1+uff ()oY (n=-1u(n) G2
Proof Since e(n) = d(n) — Q”(n)g(n),
e{n) = d(n) - ¥ (n~Du(n)
— a(n)u’ ()@ (n)u(n) (3.3)
= a(m)[t ~ u" (n)@ (n)u(n)l (3.4

From the equation (2.17), we can have,

w? () (n)u(n) = u ()07 (n-Du(n)
u? ()&= Du(n)
+u ()& Y (n-Du(n) 35
wt (n)d Yn—Du(n)
1+5H(n)d>_‘(n—— Hu(n)

(3.6)
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therefore,

1
1+ (n)@ (n-Du(r)

1—ut (M@ (n)uln) = 3.7

This completes the proof.
Now we let the tap weight error 8= W(n) — wo and
define the stochastic Lyapunov function as follows:

Vin) = 67 (n)®(n)8(n). (3.8)

Then we have the following result:

Lemma 2. The stochastic Lyapunov
satisfies the following difference equations:

function V(n)

Vn) - Vi{n-1)
= leoln) P~ (1-uf (m)@ Yn)u(n)) la(n) P (3.9)
= leg(n) P~ (1+uf (m)@'(n-Du(a)) le(n)
(3.10)

Now V(n) = 87 (n)®(n)8(n),
V(n) = 6 (n)®(n)b(n)
= (Ww(n) — wo)f! @(n)(W(n) - wo)
= W (n)®(n)R(n) — wl ®(n)w(n)

- W (m)O(n)we + wi @(n)wo

Proof (3.11)

(3.12)

On the other hand, since
vin-1) = # (n-1)®(n-D@(n-1)
- wid(n- DR (-1
~w (n-D®(r-1Dwo
+ wh o(n-1)wo (3.13)
Vin)- V(n-1)
= @ (n)0(n)@(n)
— - @(n-Dw(n-1)
- wh (®(n)i(n)
- ®(n-Dw(n-1))
~ (D(n)W(n)
~ ®(a-Dw(n-1)" wg

+ wi (@(n) - ©(n—1))Wo. (3.14)

Now we find

On)w(n) = On)w(n-1) + O (n)u(n)o’(r))

= dn)w(n-1) + u(n)a'(n). (3.15)
Also
wi (D(r)W(n) — B(n-Di(n~1))
= wl (®(n)w(n-1) + u(n)o*(n)
- &(n-Dw(n-1))
= wlu(m)u (n)w(n-1)
+ whu(n)a'(n). (3.16)

And



(®(r)w(n) ~ dn-1w(n-1)"w,

= win-Du(m)u? (n)we+ aln)u’ wo (3.17)
From the equations (2.15) and (2.9), we have

W (n)o(n)w(n)
= (W(n-D+d " (n)u(n)a’ (n)]" O(n)
W (n-1)+d " (n)u(n)a’ (n)]
W (n-DO(n)w(n-1)
+ uf (n)w(n-1)a(n)
+ i (n-Du(n)a (n)
+ uf () ®  myu(n) laln)
=W’ (- DD~ (n-1)

wi (n=1Du(n)u? (r)i(n-1)

]

ut (n)@(n-Da(n)

W (n-Du(n)a’(n)

wf (ny®~'(n)u(n) lain) £
win-1DO(rn-Dw(n-D+d(n) |

- (-u (M@ mu(n)) lan) 1% (3.18)

+ o+ 4+ o+

Therefore

V{n) - V(n-1)
= [d(n) P - (1= (n)® ' (mu(n)) lan) P
= whun)yu (n)w(n-1)
~ wlla(n)o'(n)
- wn-Duln)u' (n)wg
- alm)uM (n)wo + whu(n)u" (nywo
= d(n) P - wlu(n)d (n)
- d(myu (nywo + wlu(n) P
- (1-af ()& N n)u(n)) la(n) P
ld(n)-wlu(n)
- (1-uf ()@ (n)u(n)) Yo(n)
legn) P~ (1-u"" (m)d~ H(n)u(n)) lo(n)

1l

]

or

leg(n) 2= (1+u'"(m)® ' (n-Du(n))le(n)
(3.19)

This completes the proof.

Remark If we have the deterministic system model, then
the measurement error eg(n) = 0, n=1, 2, 3, - - - . In this
case we can have the convergence analysis in Goodwin and
Sin {1].

For the stochastic system model, if we take the expecta-

tion operator on both sides of the equation in Lemma 2, then
we have

EV(n)] - E[V(n-1)]
= g?
- E[(1+u¥ (n)® Y (n=Du(n)) le(n) ] (3.20)

Now l+u¥ (n)® Y(n-1)u(n) 2 1, we have

EV(m)] - ElV(rn-1]< o’ - E[le(n) ] (3.21)
Since 8/ (n)u(n) is independent of eg(n),

Elle(n) P} = E[Iu" (n)8(n) P} + o? (3.22)
Therefore

E[V(a)] - EIlV(n-1)]
< - E{u?(n)8(n) 1] (3.23)

forn=1,2,3, - -

It is easy to show that V (n) is a supermartingale sequence [(2].
And we conclude that

limV(n) = V() (3.24)

oo

almost surely.
Now we summarize the above results as follows:

Theorem 1. The supermartingale sequence V (n) is conver-
gent to V (eo) in probability one.

Remark V (e ) 15 not necessarily zero.

Now 0< E[V(n)] < EIV(0)] < o (3.25)
and

E[V(n)] = E[8% (n)®(r)8(n)]
= tr E[8" (n)®(n)8(n))
= tr E[®(n)8(n)8" (n)]
> AminE D)) tr E[8(n)67(n)]
= n Apin(Elu(DHu? ()])-118(n) 112, (3.26)

where
HB(n) 11E = r E[8(n)8" (n)). (3.27)
Since Apin(E{u()u(i)l) =0, 1< i< M
Eluu"hl=R, iz M
Aon(R) > 0, (3.28)
we have
18(n) 112 < L EIV(D)], n2 M.

(r=M+1) Ayin(R)
(3.29)

Summarizing the above results, we have:

Theorem 2. The Kalman filtering algorithm for the sto-
chastic system model is strongly convergent with probabil-
ity one and the upper bound for the norm of the tap
weight estimation error 8(n) = w(n)-wq is given as fol-
lows:

Vo

[¢] < e
118¢n) g N—M+1) Ama(R)

lfwetl, nz M.

(3.30)
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From the equation (3.9), we have

EWV(n)] = E[V(0)] + ly;l{cl
= E[(1+uf (1)~ (k- Dyu k) ak) £ 1}
< E[V(0)]< oo. (3.31)
Hence
lim E[(1+ 2" (n)®™ (n - D u(n ) a(n) (3.32)
o .
and it is very easy to show that {3]
}i_ﬂE[f’(n)Q“(n—l)g(n)] = 0. (3.33)

We thus have the following result:

Theorem 3. For the a priori and a posteriori estimation
errors, we have

1i1213[|a(n)|2]= limEfle(n) "] = o2 (3.34)

In the initiation stage (1 < n < M -1), we put an initial
condition ®(0)=8/, where § is a small number and / is the
identity matrix. This insures the inverse operation of
@(n), n2 1. On the other hand, this condition may cause ini-
tial instability due to uncertainty of the initial condition. If & is
small, then from the equation (3.20) we expect that the term
1+u (n)d~'(n~1)u(n) gets largs and drives the algorithm to
converge during the initiation stage but it takes time to reach
the minimum value. For a large value of §, the term
1+u (n)® Y n-1u(n) is near to 1 and Jey(n) % le(n) |2 for
0< n< M because of initial uncertainty. Now we conclude that
from the equation (3.10), for a very large valued of §,
V(n)-V(n-1)>0, 15 n< M. The stochastic Lyapunov func-
tion is increasing. This phenomena happen only in the initial
stage since for n> M, the Kalman algorithm lies in the attrac-
tion region of Theorem 2 provided that we do not have
roundoff error effects.

In order to prevent this initial divergence, we need to
restrict the value 8 in some bound. Hence we should have from
the equation (3.20),

E[V(n)] - E[V(n-1)]
= o?- E[(1+4" (m)® {n-Du(a)le(n)F1< 0

Therefore, we have

o?< E[(1+ul (n)@ Y(n-Du(n))le(n) 7. (3.35)
Since we can have approximately

E[(1+u? (n)@ Y (n=1yu(n)) le(n) ]

= E[(1+#" ()@ (n—-1yu(n)IE e (n) F] (3.36)

and we can assume @®(n—1) = 8/, for a large 8, and for
1€ n< M, we have

[1+3 ' (R)YIE[le(n) #] = o2,

for 1€ n< M. (3.37
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Therefore

r(R) 62 nin

2 2
[ cc, min

d<

»

where

2 . : 2
G, min 15",1.'5"»45“2(")']‘

(3.38)

Next we consider the following equation:

E[V(n)] - E[V(n-1)]
= o - E[(1+x" ()@ (n-Du(n))  ialn) 1.
(3.39)

For the wvery small value of & the term
1+ uf (n)® Yn-1)u(n) gets very large and the right side of
the equation (3.39) becomes positive. Hence the Kalman filter-
ing algorithm diverges. Using the same arguments before, we
can have

o< E{(1+u (m)® Y n-Dun)) Naln) 2] (3.40)
and

N+8 ! r(RHT'Eja(n) P 2 o7 (3.41)
for 1<n< M.
Therefore we have

5> _I(R) o’

Gg, min 62,

where

83 min= _min E[lo(n) ). (3.42)

1€ as M

We can summarize the above result as follows :

Theorem 4. In order to avoid initial divergence in the Kal-
man filtering algorithm, the arbitrary small initial condition
®(0)=38/ should be constrained as follows :

tI‘(R)O’z tr(R)Gtz.mm

3 S 8<
o'u, min— ©C

2_~2
8] —O',’ min
4. Conclusion

Initial convergence behaviors as well as golval conver-
gence properties are dealt with. In the initialization stage we put
an arbitrary initial condition in the Kalman filtering algorithm.
The condition perturbs the algorithm and causes initial instabil-
ity. We analyzed this behaviors by using the stochastic
Lyapunov function difference equation. And we provided a
condition to prevent this divergence.
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