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Abstract

Direct-drive robots have excellent features
including no backlash, small friction, and high
mechanical stiffness. However, dynamic cou-
pling among joints as well as nonlinear effects
become more prominent than traditional robots
with reducers. Another critical issue s that
the robot becomes more sensitive to the change
of load. In this paper, we develop a simple
current feedback scheme for reducing the in-
fluence of dynamic coupling and load sensi-
tivity on the direct-drive robots. The method
is implemented on a 2 d.o.f. planar direct-
drive robot. Then the validity of the method is
demonstrated through ezperiments.

1 Introduction

Direct-drive robots, in which special high torque
motors are directly coupled to their load, have many
advantages over their traditional counterparts. The
robots have no backlash, very small friction and high
mechanical stiffness, all of which enable high accuracy
and high speed manipulation[1].

As the speed increases, however, complex dy-
namic behavior becomes more prominent in the direct-
drive robot. Dynamic coupling among multiple joints
as well as nonlinear effects such as Coriolis and cen-
trifugal forces become more prominent than tradi-
tional robots with reducers. Furthermore, the drive
systems become sensitive to the change of inertial load
because of the direct coupling of the motors to the arm
links[2].

A variety of design and control meth-
ods have been addressed, including feedforward
compensation[3], adaptive control[2], arm design
for decoupled and configuration-invariant inertia[4],
torque feedback control[5], These methods have re-
duced or eliminated the dynamic coupling and load
sensitivity.

In this paper, a simple current feed back scheme is
presented in order to reduce the high load sensitivity
and the dynamic coupling for multiple joint direct-
drive robots. In this scheme, all the parameters of
controller are kept constant in spite of the change of
system parameters such as inertial load.

It is impossible to completely eliminate the in-
fluence of interactions and load sensitivity for an arbi-
trary frequency range. Nevertheless, it will be possible
to broaden the frequency range which are not affected
by the change of inertia through an appropriate modi-
fication of the feedback gains of control system. Thus,
if we make the bandwidth wider than normal opera-
tion speeds, system responses will not be influenced by
the change of inertial load at normal operation speeds.

We derive the condition for the bandwidth to be
kept wide enough, even though the inertia increases
in a certain range. We use a root locus technique to
illustrate the effects of inertia change upon the system
dynamics.

For a multiple d.o.f. robot, interactions are
caused by inertia matrix as shown in section 4. Thus,
one can make the system dynamics independent of the
Inertia at normal speeds. Namely the system is dy-
namically decoupled. The method is then applied to
brushless DC motors. Recently, brushless DC motors
are widely used for actuators of direct-drive robots.
The load desensitization method is implemented on a
2 d.o.{. planar direct-drive robot with brushless DC
motors. Finally the validity of the method is proved
through experiments.

2 Load Desensitization

Fig.1 shows the equivalent block diagram of a 3
phase, Y-connection brushless DC motor with position
feedback. Here, ki, L, R, represent, respectively, the
torque constant, inductance, and electric resistance of
each phase of the motor. H represents inertia including
the load, and K,, K,, Ky represent position, velocity,
and current feedback gains, and ky,., k4 are gains of
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the pre amplifier and the power amplifier, respectively.

Fig.1 Block diagram of single link drive system

For this system, the transfer function {rom position
input 4 to position output ¢ is represented as

9 Ao
0,1 - A353 + Agsz + A15 + A()

(1)

where
A3 = LH
Ay = H(R+ Krky)
A = SR(Kokpekak)
Ay = %I(},kl,,ek,gkt

Suppose that the coeflicients A3, A; including
the inertia H are zero ir equation (1). Then the sys-
tem becomes a 1st order system, and the dynamics
of the system will not be influenced by the inertia or
the change of it. However, it is impossible to make
the coefficient Aa completely zero. So we consider to
make the coefficients Az, A, sufficient small so that
the response of the system may not be influenced by
the inertia or the change of it at a normal speed range.
Then the system will be desensitized for the change of
inertial load at normal operation speeds.

Usually, the coefficients A3, A, are considerably
high for most servo systems. For a large A,, the band-
width becomes narrow when the inertial load increases.
Therefore, the system response will be influenced by
the interactions and load change even at low speeds. In
the next section, we derive the condition on the control
system that can maintain a wide bandwidth in spite
of some increase of the inertia. We also discuss how to
select the feedback gains for the load desensitization.

3 Control System Design

We investigate how the poles of the system vary
depending on the inertial load. To this end, we draw
root loci for inertia H as parameter. Fig.2 shows a
typical root locus of the direct-drive system described
above. Note that the complex roots are dominant and
that the complex roots move towards the imaginary
axis as the inertia increases. Therefore, the bandwidth

becomes narrower. A 3rd-order system with large A,
has this pattern of root locus.

If we make the coefficient A, appropriately small,
the root locus differs from Fig.2. Fig.3 depicts the root
locus for small A;. In Fig.3, it should be noted that the
dominant pole is a real single root, and it moves away
from the imaginary axis as the inertia increases. Then
the bandwidth becomes wider. However, we should
determine the value of Ay by considering the stability
of the system, because the system may be unstable if
A, is too small.
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Fig.2 Root locus for inertia as parameter in case of
large A,
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Fig.3 Root locus for inertia as parameter in case of
small Ay
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The o — B diagram by Siljak{6] is a convenient
tool in determining feedback gains in relation to the
system response. To depict the curve, equation (1)
should be normalized as given by equation (2),(3). In
the a—f diagram , constant o, constant { and constant
wy are plotted.
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The diagram is given by Fig.4.

Parameters o and 3 change when the inertia of
system changes. We plotted the loci of o,8 in Fig.4,
as the inertia changes. The loci departed from the
left top side move to the right bottom as the inertia
increases. In the region where o > 3, o is larger than
wn. The root locus corresponding to this region has
been given by Fig.2. In the region where a < 3, o is
smaller than w,. The root locus for this was shown
in Fig.3. Therefore, to maintain a desired bandwidth,
it is desired that « is no larger than 8 even when the
inertia load becomes maximum.
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Fig.4 o — 8 diagram

From Fig.4, it follows that the stability is poor if
f is much larger than o. Therefore, we need to tune
the system so that 8 may not become too larger than
a even when the inertia becomes minimum. Actually
the ratio of maximum inertia to minimum is not larger
than 2. In the case of CMU DD Arm, that ratio for
a proximal joint was around 1.57. For example, if we
set the gain to be oo = 2.38,4 = 3.78 at the minimum
inertia, @ and § becomes 3 at twice inertia of mini-
mum. Hence the system is held stable for minimum or
maximum Inertia.

In this paper, we determine the controller pa-
rameters to be a=3 at the maximum value of the an-
ticipated inertia load. Then it is guaranteed that g
does not exceed o for maximum inertia, and 3 may
not become too larger than o for half of maximum
inertia.

The above method of control system design re-
quires that the coeflicient Az small enough to satisfy

the condition on o and 8. In order to make the param-
eter A, small, we employ positive current feedback.
As for the bandwidth, we need to make parameter Aj
small, because the bandwidth is approximately in pro-
portion with ¢/A¢/As. Since Aj is given by LH, the

inductance of the motor should be minimized.

4 Dynamic Decoupling

If we ignore the nonlinearity of arm dynamics
{for the sake of simplicity, the joint displacements of a
d.o.f. robot is given by
where, 84, 6 represents the input, the output vectors
respectively. And the transfer matrix G is given by

G= [A383 + 14252 + A18 + Ao]—le (5)

where A; are n X n square matrix for n d.o.f. robot,
and given by

Az = diag[L)H
A2 = dzag[R + I(]]CA]H (6)

A] = diag[%kt(l(ukprek,q/ct)]

Ao = diag[ih’p/cp,ck,qkt]

In equation (6), only H is not a diagonal matrix.

So the interactions among joints are due to inertia ma-
trix. However, as mentioned in section 3 the system
dynamics can be independent of the inertia matrix.
Note that the system is decoupled because matrices
A; and Ay are diagonal.

5 Experiments

We built a 2 d.o.f. planar direct-drive robot
whose actuators are 3-phase brushless DC motors.
First, we attempted load desensitization by positive
current feedback. Fig.5 shows step response for single
a link. As shown in the figure, the response is al-
most not changed in spite of inertia increase if we take
positive current feedback. However if we don’t take
positive current feedback the response varies largely
depending on the inertial load as shown in Fig.6.

The second experiment was or the dynamic de-
coupling for a 2 d.o.f. planar direct-drive robot. The
reference positional input was zero for joint 1, while a
step input was applied to joint 2. And then the output
position of joint 1 was observed. As shown in Fig.7,
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joint 1 was rotated 0.0176 rad due to the dynamic in-
teraction. However, the interaction was almost elimi-
nated with positive current feed back as shown in Fig.8.
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Fig.5 Positional step response of single link system
with positive current feedback
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Fig.6 Positional step response of single link system
without positive current feedback
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Fig.7 Interaction test for 2.d.o.1. direct-drive robot
without positive current feedback
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Fig.8 Interaction test for 2.d.o.{. direct-drive robot
with positive current feedback

6 Conclusion

Dyramic decoupling and load desensitization of

direct-drive robot by current feedback have been pre-
sented. The control system was designed by using the
o — (3 diagram and root loci as inertial parameter. The
method was implemented on a 2 d.o.f. planar direct-
drive robot with brushless DC motors. Validity of the
method was proved through experiments.
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