‘88 KACC 1988.10.21~22

An Application of the CMAC to Robot Control

Kwanghee Nam and Tae-yong Kuc
Department of Electrical Engineering, POSTECH
Pohang, P.0O.Box 125, Kyungbuk 790-600, S. Korea

Abstract: An iterative learning control scheme is presented
with the aid of CMAC module. By enforcing the role of
linear controller with the introduction of velocity feedback,
it becomes possible to make the trajectory error equation
stable. One advantage of this control scheme is that it does
not require acceleration feedback. Computer simulation
results shows a good performaunce of the scheme even in

the case where the gravity 1s not compensated.

1 Introduction

Since the dynamics of rotot manipulators is highly non-
linear, it is not easy with classical fixed gain controllers to
accomodate the parameter changes resulting from nonlin-
ear charaterisctics. As a nonlinearity compensating con-
troller, computed torque method[3] was proposed. How-
ever, since the computed torque method requires apriori
knowledge of robot dynamics, it is not flexible with respect
to the varying environinents such as payload changes. Var-
ious techniques of model following adaptive control[8] have
been utilized to incompass such an inflexibility without a
precise description of the dynamic model. A general draw-
hack of adaptive approach is a large computiational load

for the real-time parameter identification.

Recently, iterative learning techniques(2,5,6] based on
the repeatability of robot motion have been paid a spe-
cial attention ‘as a new control scheme. Apart form the
simplicity and straightforwardness, the iterative learning
methods are flexible because they don not require the ex-
act dynamic model. Bondi et. al.[4] established the the

uniform boundedness of the trajectory error for an itera-
tive learning scheme by utilizing high gain feedback.
Miller et. al.[9] have proposed a feasible control scheme
utilizing Cerebellar Model Articulation Controller (CMAC)
which was developed by Albus{l]. They have used a learn-

ing scheme to adjust the values in the CMAC module on-

999

line based observation of the robot input-output relation-
ship, in order to form an approximate dynamic model of

the robot in appropriate regions of the state space.

Following the work of Miller III et.al.[9], we also utilize
the CMAC for a learning control of the robot motion, but
in this paper the need for the acceleration measurement is
eliminated because the possible acceleration measurement,
error may deteriorate the performance controller. In Sec-
tion 2, we describe the dynamic model of a robot manipu-
lator algon with a learning control strategy. In Section 3,
it is illustrated the learning control scheme that is utilized
in this paper. Finally, compuater simulation results for an

example are shown in Sectiond.

2 Dynamics of a Robot Manipu-
lator and CMAC

Generally, the dynamics of robot manipulators which

have n degree of freedom is described by
D(g)§+ B(g,§) + Glg) =T, (1)

where D(q), B(q,¢), and G(g) represent the inertia matrix,
Coriolis plus centripetal forces and the gravity vector, re-
spectively in the generalized coordinates ¢ € R", while
T € R™ represents the vector of torques applied to each
joint.

The control objective here is to make a manipulator
track a given desired trajectory by iterative learning method.
That is, by training the system through repetition of track-
ing, we are aiming at reducing trajeclory crror progres-

sively.

By superscript ¢ we denote the state and torques of ¢-

th iteration. To distiguish from the state (qa4, 4a) of the
desired trajectory, we denote by (o, §,) the state of robot.

Linearizing the system (1) in i-th iteration along the

desired trajectory gq(t), we obtain the following system:
C(8)(gh — da) + E(1)(g} — da) + F(£)(g} ~ 4)

=T-5(t), ()

where
JB
C(t) = D(qd)v E(t) = a*q~|(94,dd)’
oD, . aB aG
F(t) = a_qlqdqd + '(_9—(;‘(414,(1'4) + a_qlq.n
and

S(t) = D(q4)da + B{qa,4a) + G(qa).

We apply the following input to the system (1) at the

i-th iteration:
T' = K(qa— q;) + L(¢a — ¢}) + H'(2), (3)

where K and L are positive definite constant matrices, and
H'(t) is an additional input vector to be adjusted so that
the term S(t) is canceled out in the error equation. Apply-

ing input (2) to the system, we obtain the equation for an

error ei(t) = gq(t) — qé(t)
D)E®) + (E(t) + K)e'(t) + (F(t) + L)e'(t)
= S(t) - H(2). (4)

The goal is to let e'(#) go to zero as the iteration num-
ber 1 increases. For this purpose, we choose for K and L
sufficiently large positive definte matrices so that the time-
varing terms, F(t) and F(¢) may be dominated. Then, the
dynamics for the error equation (3) can be made stable.
On the other hand, since the nonzero term 5(¢) drives the
error €'(t) away from zero, it should be canceled out by the
term I7:(t). However, since it is assumed that the exact
dynamic model of the manipulator is unkown, S(1) is not
known initially. Hence, we corporate a learning mechanism
so that H(t) converges to S(1) for each t with the number
of iteration. If the trajectory error ei(t) is exactly zero,

then the following must be satisfied:
THt) = H'(t) = 5(¢).

Hence, S(t) can be interpreted as the torque required when
moving along the desired trajectory. The proof of conver-

gence of this sort has been establised in [7].

For a learning scheme, we utilize CMAC which was orig-
inally proposed by Albus[1l]. In the CMAC module, mem-
ory is used as associative neural elements, whose contents

are adjusted so as to produce the correct output. CMAC is

basically a table look-up techniques for representing com-
plex nonlinear functions utilizing the concept of continuity.
That is, since the output values of a continuous function for
neighboring input points are not so much different, one may

be able to save the size of memory in storing the output

values of the continuous function by sharing the common
portion of the data. CMAC realizes this idea through a
content” addrresing technique. For more specific illustra-
tion of CMAC, refer to [9,1].

L N
FEEDBACK SFAM
SENSORS

TABLE 4F
WEIGHTS
WEIGHT I
COMMAND FiI SELECTT SUMMATLON
HIGHER LFVELD on —mof ™. OF SELECTED
) . N WEIGHTS
\ APUT SPACGE . Y
1 . K o Y A Z
N YA st A I ; 4
P R . ‘ l
. : /
N al - s 3
! 7 _ADTuUST
. WEIGH
/

S

f[’“IﬂT,
|

\

4+

i

|

|

!

PesiReD
QUTRUT

| P

Figure 1. The CMAC module block diagram

3 A Learning Control Scheme

CHAC
Torqu
DN Greerster

Trajectory

Planner

Figure 2. Learning control scheme of a manipulator with

CMAC

Figure 2 illustrates a block diagram of a CMAC-based
learning control scheme utilized in this work. It consists of
three major parts: Firstly, it has a position and velocity
feedback controller in which the gain matrices K and L are

suitably chosen so that the error equation (4) is stable. No-

1000

tice again that it is basically a high gain controller for the
stability. Secondly, it has a CMAC learning algorithm with
which the stored values (often called weights) in the look-
up table (often called neural memory) are updated for the
next iteration. Specifically, the weights are corrected by the
proportional amount of errors in the position and velocity.
Finally, it has a CMAC torque generator where the torques
Hliyq, Hi are read out from the memory corresponding to
the desired and actual states. That is, the torques Hiy,,,
H?, are generated by summing the weights in the neural
memory which are addressed by the content addressable

hash function with inputs (gii1, Ggt)s (Tors Goe)-

The trajectory planner has a function generator inside
which produce the desired state for each step. The two
torques Hy, ., H}, from the CMAC torque generator are
subtracted to make a compensating torque T, i.e., the

compensating torque at the (k + 1)—th step is given by
Wék+1 = }I;k+1 — Hyy. (5)

This torque corresponds to the torque needed for moving
the manipulator to the desired trajectory at the (k + 1)-
th step, if not for the position and velocity errors. This
compensating torque is added to the torque 77, from the
linear controller, resulting in the total torque T}, which
is applied to the systemn. When the control system is not
sufficiently trained at the initial stage of learning, the ma-
nipulator would not follow the desired trajectory exactly.
In this case, the whole scheme depends more on the linear
controller, because the error has not been vanished. How-
ever, if the manipulator follows the desired trajectory after
training, the function of linear controller is not activated
at all since the error e(t) is equal to zero. In other word,

after the perfect training, it turns out to be that
D(qa)ga + Blga, 4a) + Glaa) = Hu, (6)
since 1% = Hyy, for each step.

On the other hand, by the CMAC learning rule, the
torque I, for the desired trajectory at the k—th step are

updated for the (7 + 1)-th iteration as {ollows:
Ht' = Iy + 815,)

where 8 is a training factor between 0 and 1. With the
above update rule, the scquence { Hi.}; converge to a value
which is required for moving the manipulator one step

ahead on the desired trajectory.

Miller III et.al.[9] also utilized the CMAC module in

the process of learning the inverse dynamics the system

through input-output data base. Under the assumption
that the acceleration term is available, they treated the
dynamics of a robot just as an algebraic equation and ob-
tained the inverse mapping relationship between the input-
output data. However, the intrinsic time delay of accel-
eration sensors and the noise sensitivity of differentiation
of signals make it difficult to utilize acceleration measure-

ments in the contoller.

However, in our approach we do not assume that the
acceleration is available, because it is practically very hard
to obtain the accurate values of acceleration due to the
intrinsic time delay of acceleration sensors and the noise
sensitivity. We take more of dynamics into account by

merging the concept of classical feedback control.

4 A Simulation Example

We consider a two-axis robot manipulator shown in

Figure 3 as an example.

N\
T

Figure 3. Schematic diagram of two-axis robot
manipulator

used in the dynamic simulation

The dynamic model of the above manipulator is given by

Ty = [(my 4 ma)d? + mads + 2myd;d; cos g6y

+ (mayd} + madydy cos ¢2) 2

— mgdydaga® sin gy — 2madidaqidasin gy

+ (mq 4 ma)gd; sin g + magdssin (g1 + 2) (8)
Ty = [mad) + madid; cos goldy + mad3qs

— mydidygidy sin gz + magdasin(g + ¢2), (9)

where m;, d; and ¢; represent the mass, length and joint

1001

angle of the link ¢ for 1+ = 1,2. We let my = 10Kg, m, =
10K g, dy = 1.0m and d; = 0.8m. [or a desired trajectory,

we chose
qi{t) = (x/3)cos(2r/5)t, 0<t<5s
q(t) = —(w/2)cos(2x/5)t —7/4, 0<t<5H

with the following initial and final conditions:

01(0) = u(5) = 7/3, ¢2(0) = q2(5) = —37/4,

¢1(0) = ¢2(0) = ¢1(5) = §2(5) = 0.0 (rad/sec)

Further, we chose # = 0.6, 5msec for the step size, and the
following for the gain matrices:

150 0 100 0
K=|" . L= .
0 150 0 100

The simulation program was written in language C and
was run on VAX-8800. In Figure 4 the actual trajectories of
the system with only a linear feedback controller is shown
compared with the desired trajectory. Iigure 5,6,7 show
that the actual trajectories converge to the desired one as
the iteration number increases from 1 to 9. Figure 8,9,10
show the velocity profiles corresponding to Figure 5,6,7. In
Figure 11, the sums of squared position and velocity errors
One

can notice from [Figure 11 that the position erros vanish

of each joint are plotted versus iteration numbers.

after iteration number 5, while the velocity errors become
negligible after number 6. Figure 12 shows 3" {T%}? and
SeiTE? for each joint are plotted versus iteration num-
bers. Figure 12 shows the evidence of the transition of
control schemes. That is, at the early stage of iteration
the torques from linear controller T, are much larger than
the compensating torque 7, from the neural memory. But,
since the position and velocity errors decreas as the iter-
ation number increases, the torque 7% becomes negligible
while the compensating torque 7. grows high. In other
words, the compensating torque 7., becomes the desired
one needed for the tracking of the desired trajectory. Fi-
nally, Figure 13 show the actual trajectory of the system
with only a linear feedback controller when the gravita-
tional term is not compensated. Similarly, Figure 14,15,16
show the trjectories of the system converging to reference

trajectory as iteration number increases from 1 to 13.

0.86

~0.14 J

~1.14 4

angle{rad)

-2.14 4

=314 Frr—rrv T
0.00 40.00

LSRN A A UL S 0 5,50 RSB B

120,00 200.00

"7 80,00
time(1/40sec)
Figure 4. Trajectories of the system without a learning

scheme (solid line: desired trajectory; dotted line: actual

trajectory)

=314 4 Ty

0.00 40.00 TTi2000 | 160,00 200,00

" 80,00
time(1/40sec)

Figure 5. Trajectories of the system afler the 1st iteration

(solid line: desired trajectory; dotted line: actual trajec-

tory)

0.86

000 s000 | 8000 . 12000 16 260.00
Figure 6. Trajectories of the system alter the 3rd iteration
(solid line: desired trajectory; dotted line: actual trajec-

tory)

1002

086

-0.14

-1.14

angle(rad)

-2.14

3
-3.04 3o
0.00

'0b0’ | 8OO0 | 12000 | 16000 | 200.00
time(1/40sec)
Figure 7. Trajectories of the system after the 9th iteration

(solid line: desired trajectory; dotted line: actual trajec-

tory)
286 4
desired
-—— observed
. 0.86]
8]
()
%]
N
P]
S]
o]
g 1
(1)41'] 7
>]
=314 Jrm e T T
0.00 40.00 120,00 160.00 200,00

80.00
time(1/40sec)

Figure 8. Velocity profile of the system alter the 1st it-
eration (solid line: actual velocity; dotted line: desired

velocity)

a——— observed

=314 4 T

TB0k0 | 12000 | 16000 | 200.00

time(1/40sec)

286 J
]
]
B < Zithan ™ —— desired
1 *=e———- ohserved
o~ 086
3 1
1]
¥ 1
~
o
5]
o b
g 1
3 -t 14
> b
-3.14 e e
0.00 40.00 80.00 120.00 16000 200.00

time(1/40sec)

Figure 10. Velocity profile of the system after the 9th it-
eration { solid line: actual velocity; dotted line: desired

velocity)

9.60

8.00 4 ———— pos.err]
3 ot pCS. €172
3 e vel.err)

~A—aea vel.err2

L 6.40]

]]

.

s

o

480]

o E

= E

=]

3 E

5320 g

n]

1.60 3

0.00 T TR Tt T b T T T b Y

20

o

trials

Figure 11. Plot of the squared sum of posilion and velocity

errors versus iteration number

400000.00 4
] ———e= tor.d1
—————— torel
] —s——s— tor Pz
300000.00 1 —r—aa tor 62
Q
.
lo}
>
gZOOOO0.00 P /\/\\/\‘/\\\//\/’\\
®]
2]
o 4
o 3
£ 100000.00 4
[/ S
0.00 Frr K ANty Ay oAt
0 1 1 20
trials

Figure 9. Velocity profile of the system alter the 3rd it-

eration (solid line: actual velocity; dotled line: desired

Plot of i {71 and {77 }* for each joint

versus iteration number

Figure 12.

velocity)

1003

0.86

desired
observed

-0.14

~1.14

angle{rad)

|
~
e

o s 1%
time(1/40sec)

Figure 13. Trajectories of the system without gravity com-

Ty

180 200

pensation and learning scheme (solid line: desired trajec-

tory; dotted line: actual trajectory)

desired
observed

-0.14]
—~
el
o]
—]
= 3
D114]
2 :
C
o
—2.14;
~3.14 3+ T T T YT T YT T T
) 120 160 200

N
time(1/40sec)

Figure 14. Trajectories of the system without gravity com-
pensation after the 1st iteration (solid line: desired trajec-

tory; dotted line: actual trajectory)

0.86
desired
observed
-0.14
~
©
a
bl
—
L
o
C
o
~2.14
=314 frrVTTt A JRGASL I S B B B S o o o))L e et e s e e e
k) 40 160 200

" dy 120
time(1/40sec)

Figure 15. Trajectories of the system without gravity com-

pensation after the 3rd iteration (solid line: desired tra-

jectory; dotted line: actual trajectory)

7 desired
observed

=314 Frrrr ey A m \
0 40

Figure 16. Trajectories of the system without gravity com-

pensation after the 13th iteration (solid line: desired tra-

jectory; dotted line: actual trajectory)

5 Conclusion

In this work, a new control method for robot tracking
is suggested by modifying the learning control algorithm in
[9]. The controller in this paper also utilizes the CMAC for
learning as well as a linear feedback controller. But, com-
pating this control scheme with the original one, more em-
phasis is laid on the linear controller part. That is, through
the addition of velocity feedback we makes the error equa-
tion stable. This control method, in turn, results in the
elimination of the need for the acceleration which is nec-
essary in obtaining the functional inverse in [9]. This not
only reduces the memory size for learning but also makes
the contoller more robust by avoiding the possible error
caused by acceleration scnsors. The simulation results for

a two-axis manipulator prove strongly its performance.

References

{1} James S. Albus “ Brains, Behavior, and Robotics, ”
N. H. Byte Books, 1981.

[2] S. Arimoto, S.Kawamura, and F. Miyasaki, “Bettering
operation of robots by learning,” J. Robotic Syst., pp
123-140. 1984.

[3] A. K. Bejezy, “ Robot Arm Dynamics and Control,”
Technical Memo 33-669, Jet Propulsion Laboratory,
Pasadena, CA, 1974.

{4] Poala Bondi, Giuseppe Casaline, and Lucia Gam-

bardella, “ On the iterative learning control theory for

1004

(5]

(7

9]

robotic manipulators , 7 J.Robotics and Automation,
Vol.4, No.1, Feb.1988.

G. Casalino and G. Bartolini, “A learning procedure
for the control of movements of robotic manipulators,”
presented at the IASTED Symp. Robotics and Au-

tomation, Amsterdam. The Netherlands. June 1984.

J. J. Craig, “Adaptive control of manipulators through
repeated trials.” in Proc. 1984 Amer. Control Conf.,

San Diego, CA, June 1984.

Sadao Kawamura, Fumio Miyazaki, and Suguru Ari-
moto, “ Realization of robot motion based on a learn-
ing method ,” Trans. Sys. Man.,Cyber., Vol.18, No.1,
Jan./Teb.1988.

C.S.G. Lee and M.J. Chung, “An adaptive control
strategy for mechanical manipulators,” IEEE Trans.
Automatic Contr., AC-29, pp 837-840, 1984.

W. Thomas Miller 1I1, Filson 1. Glanz, L. Gor-
don Kraft III, “Application of a general learning al-

gorithm Lo the control of robotic manipulators, ’
Int.,J Robotics R. Vol.6,No.2, Sum.1987.

1005

