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abstract: In recent years there has been much
interest in using light-weight, higher performance
arms for both commercial and space-based
applications, leading to the research of flexible
robot manipulator. This paper is concerned with
the trajectory control of a flexible arm using
inverse dynamics. Inverse problems are important
to robot control and programming, since they allow
one to find the appropriate inputs necessary for
producing the desired outputs. The input is
obtained by the numerical inversion of Laplace
transformation in the time domain. And we attempt
the trajectory control experiment of a flexible
arm using this calculated input. In this article
we compare the numerical results with experimental
results and can find good agreement. The results
make clear that this technique has the good
potential for the control of tip trajectory of
flexible robot arms.

1l.Introduction

In recent years, there has been technological
interest in the design and control of light-weight
robots and several papers on it have been
published during past years. There are many
researches concerning the control of a flexible
arm. They are used some special sensing devices as
a sensor for the vibration; for example, optical
sensor, strain gage, CCD camera and
accelerometer (1-6].

But there are few papers about an inverse
dynamics problem for the trajectory control of
flexible arms. Zheng-Dong Ma, et al. (7] computed
actuator torques required for a flexible arm to
track a given trajectory by using virtual rigid
link coordinates. Eduardo Bayo[8] presented a
structural finite element technigue based on
Bernoulli-Euler beam theory which will permit the
finding of the torques that are necessary to apply
at one end of a flexible link to produce a desired
motion at the other end.

But the method proposed here aims at
controlling tip motion by directly computing the
base angle necessary to apply at one end of the
link to achieve the desired trajectory at the
other end. & laplace transformation method is used
to obtain the results in the time domain. The
problem of inverting the Laplace transform of
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aetermining time function from its Laplace
transform can often be solved analytically by
applying a partial fraction expansion or
integration along some contour in the complex
plane. When this proves to be too difficult or
impossible due to the complexity of the formula,
numerical methods may be necessarv. We used here
the procedure for using the approximation of the
exponential function in the Browwich integrall[9-
10]. An efficient and simple numerical algorithm
is then proposed for the solution of equations.
Finally, the proposed technique is applied to a
particular flexible one-link robot arm with
payload mass. The arm is driven by a DC motor
about an axis through the arm’s fixed end. And we
attempt the trajectory control experiment of a
flexible arm. This experiment is the use of the
signal produced by the computer simulation; the
computer reproduces the stored signal in real time
which can be a reference input to the system.

In this article we compare the analytical
results with experimental results and can find
good agreement. The results make clear that this
technique has the good potential for the control
of tip trajectory of flexible robot arms.

Figure 1

A flexible arm model.



2. Foraulation and Analysi

Figure 1 shows a uniform arm of length 1 with
a payload mass at the tip of the arm. The other
end of the arm is clamped on a vertical shaft,
which is driven by a DC motor. Let us consider
small motions about the equilibrium state and low
angular velocity. This assumption implies
retaining only linear terms in the equations of
motion. Here we define the flexural displacement
of the arm W(r,t) as W(r,t)=Ws(r,t)-r6 . In that
case, the equation of motion of the arm is given
by
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where o is the mass density, ¥ is the flexural
displacement, A is the cross-sectional area, I
is the moment of inertia of arm cross-section, t
is the time, E is the young's modulus, 6 is
rotating angle and ¢ is the internal damping
coefficient. Boundary conditions of the arm and

the equlibrium equation between the torque and the
moment on the shaft are given by
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where Mp is the payload mass, J is the moment of
inertia of the motor and shaft, & 1is the viscous
friction coefficient, Jp is the paylocad mass
poment of inertia, N is the gear ratio, u(t) is
the armature input voltage, R is the resistance of
the armature, and K7 and Kb are constants
related to the motor torque and the back electro
pagnetive force, respectively. Equation (1) and
(6) can be solved by applying the method of the
Laplace transform with respect to t, defined by
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Transforming equations (1)-(6) with respect to t
gives

E{ltcs) 1d*W/dr 4 pAse (Wtr @) =0, (93

o

W(0)=0, d¥(0)/dr=0, (10, 11)
Jos® i@ +dW{1)/dri 48 (14csi [d2W{l)/dr==0, (12)
Mes? (W(l1)+1®j-F{ltcs)1d°W{l}/dre=0, (13)
INs2@t{etkT K /R)NS O

=E(l4es) 1/Nd=W 10} /dret (R 7 /R)uis). (14)

Hereinafter, the following dimensional and non-
dimensional quantities are introduced:
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A general solution to equation (1) is

Wi(t)=Acos Br+3sin BT+Ccosh BTHIsinh Br-TO  (18)

A, B, C and D are unknown constants determined
from the boundary conditions. Substitution of

eq.(16) into equations (10)-(14) leads to
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Here we put a::=0, 25250, 8921 in eq.(17) when
input is applied as a rotating angle. From eq.(16)
one has

T's)=A XW(r,s) /K [A(cos BT-cosh BT)
tAs(sinBT-sinh 8 T)

tA(sinh BT/ 8-1)} {18)

where
411 312 843 0 ai2 a1s
A=|az: 222 223, AA=|0 322 222/,
43, 332 433 l 832 ass
gy 0 a(s 3yr 212 0
Ap=jaz: 0 2z5| « Ac=[dz; 222 0
a3, | ass a3y ds2 |

Here we consider the desired tip trajectory
Woll,s)=e-9-33(1-g-°-%%}2/0,255° as shown in
Figure 2. This desired tip trajectory is based on
bang-bang torgque, which is required for time
optimal contrel in the case of a single link rigid
robot arm. The final results in the time domain
may be obtained through the application of the
numerical inversion of Laplace transform [9-10].
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Figure 2 Desired tip trajectory.
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The Laplace inversion techniques are
classified as (1)method using simple rules and
table of transforms, (2)method using Bromwich
integral and Cauchy integral theorem, and
(3)numerical method. In order to sclve these
problems the present paper has been used a
numerical method[9-10] for computer use with the
following advantages: (l)Programming is easy.
(2)Required memory size is small. (3)Estimation
and control of the errors are easy. (4)Application
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range is wide. The essential point of this method
consists in the approximation of the exponential
function exp(s) by

Fe-{s,8)=exp(a)/2cosh(s-a)
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We define a function for t>0
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On substituting (19) into (20), we have
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Equation (21) shows that the function fec(t,a)
gives a good approximation when a>>1 and will be
used in error estimation. On the other hand, (22)
can be used to compute the numerical value of the
inverse Laplace transform effectively. In
practice, we must truncate the infinite series in
(22) to some finite terms. Simple truncation,
however, results in a relatively large error and
is not realistic. In this respect, an effective
method using Euler transformation has been
developed. We transform (22) as follows
focitialzles/U (0 35 Brnsen) (24)
In practice, (24) is truncated to some finite
terms, so that it is more convenient to use the
expression

L oprpsor (17270 B hnaby s (25)
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where the Amn are defined recursively by

Ama=l, Amn-sZhmat (571 {26}

Thus we calculate the (l,m)th approximation by

fecmltia)z(er/t) 0 Bl Earems By auabiia) (20)
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Figure 3 Experimental device.

Figure 3 shows the experimental arm. It is a
1000(mm) long, 29%.9(mm) thick, 2.0(mm) width, very
flexible that can bend freely in the horizental
plane but not in the vertical plane. At the one
end, the arm is clamped on a rigid hub mounted on
the vertical gear shaft(gear ratio N=5) which is
driven by a dc motor; thus, the arm can rotate in
the horizontal plane. The reference input has two
types. One is a rotation angle and second is a
torque. The rotation angle input is more easy to
control than torque input. Thus we used here the
rotation angle input. Figure 4 is the block
diagram of a trajectory contrel experiment. The dc
moter (SANYO DENKI SM60) is driven by a current
amplifier and its rotating angle is measured by a
potentiometer (MIDORI PRECISIONS CP-2U). The
reference input is caliculated by a computer (NEC
PC-9801 VM21) and transformed into electrical
signals which are transmitted to mechanical arm.
This signal is analogized by 12 bits digital-
analog(D/4) converter. The angular signal from the
potentiometer is amplified and filtered by an
analog low-pass filter. This filter’s cut-off
frequency is 100 (Hz). The signal is then
digitized by 12 bits analog-digital(A/D)
converter. And this signal is sent to a computer;
these data are stored in its memory. The CCD video
camera (NATIONAL MACLOAD) is used to measure the
motion of the arm. In this case the sampling
period used for the computer input is 5(ms) and it
used for measurement of tip position is 1/30
(sec).
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Figure 4 Block diagram.

Fig.5 is the input rotation angle without
payload mass. Fig.6 shows the end point
trajectory. Fig.7 is the mode simulation. In this
case the numerical results agree with the
experimental results. The input rotation angle
keeps on moving 0.1 sec before and after the tip
moved its start and final position, during this
time the input rotation angle is absorbing or
compensating the vibrations.
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Figure 6 Tip trajectory(without payload mass).



Figure 7 Mode simulation(without payload mass).

Fig.8 shows the input rotation angle with
payload mass. Fig.9 is the results for the tip
trajectory. Fig.10 is the mode simulation. When
the desired tip trajectory’s period is smaller
than the first natural frequency, the swing-back
motion is necessary. The rotation angle is very
difficult to follow the calculated reference input
because of gears backlash, modeling error and any
other nonlinearity. The results show that the
residual vibrations remain. Compensating this
residual vibrations we attached the additional
sensor using strain gage. We feed back the
flexural distortion at r=20(cm) and add reference
input after the tip reached the commanded
position. Fig.11 is the block diagram of a
trajectory control experiment with strain gage
feed back. This experimental results are shown in
Fig.12-13. The residual vibrations slightly
damped. This results make clear that this
technique has the good potential for the control
of tip trajectory of flexible arms.
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Figure 10 Mode simulation(with paylcad mass).
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Figure 8 Base angle(with payload mass).

Figure 11 Block diagram(with strain gage).
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Figure 13 Tip trajectory(with compensation).

Conclusions

A new method has been developed for the
inverse dynamics of a single link flexible robot
arm with paylead mass driven by a DC metor about
an axis through the arm’s fixed end. The inverse
dynamics are important to flexible robot arm
control and programming, since they allow one to
find the appropriate input rotating angle
necessary for producing the desired outputs
trajectory without overshoot and inverse response.
This proposed method is based on the numerical
inversion of Laplace transform. Results obtained
are summarized as follows.

(1) The first advantage of the numerical inversion
Laplace transform method is to approximate the
exponential function in the Bromwich integral and
can easily be implemented in efficient
subroutines, micro-programs and special hardware
devices.

(2) The second advantage of this method is that we
need not consider the mode numbers and the
natural frequencies of the system.
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(3) ¥e compare the simulation results with the
experimental results and can find good agreement.
(4) The proposed procedure has the good potential
for the control of tip trajectory of flexible
robot arms.

(5) When the arm has a payload mass, the natural
frequency decreases; the influence of the
flexibility of the arm increases and the residual
vibration remains longer. In this case the input
keeps on actuating after the tip has reached its
final position because of compensating the
residual vibration.

(6) When the desired tip trajectory’s period is
smaller than the first natural frequency the
swing~back motion is necessary.
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