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Abstract: In order to construct a nonlinear observer,
change of coordinate system is necessary. llowever, as in
the case of fcedback linearizable system it is nct easy to
obtain a coordinate transformation map. Iu this paper, a
canonical structure is proposed for observable systems with
an objective of finding a vector field which is necessary for

the generation of a new coordinate system.

1 Intorduction

“ollowing the work of Krener and Isidori[l] the the-
ory of nonlinear observer has been developed. Bestle and
Zeitz[2] dealt the problem of constructing an observer for
nonlinear time-varying systems and Krener & Respondek([3]
and Xia & Gao[] extended their work to the design of an
obscrver for multi-output systems. Zeitz{6] constructed an
observer for a system with an input as an extended Lu-
enberger observer type, while the comparison study was

performed by by Walcott and Zak{4].

In this paper, we consider the conditions of transforma-
bility into an observer form for practicality. We propose a
canonical structure which is useful as an intermediate step

to a complete observer structure.

2 Problem Statement

Consider a single-output system
& = f(z), 1

y = h(x), (2)
where z € M and M is a smooth (€% — dif ferentiable)
n-dimensional manifold. Let the cquilibrium point of the
system (1) be denoted by z,. We say that the system
(1),(2) is observable if there exists a coordinate transfor-

mation map T : M — R" such that in the new coordinate

£ = T'(z) the system is represented by

£ = AC+u(y) 3)
y = <&, 4
where
0 0 - 0
0 1 -0
A= , e=[1,0,---,0],
0 0 - 1
0 -0
W= [Py, -, Pa)T is a vector of scalar functions of y.

Once the system is transformed into the nonlinear ob-
server form (3),(4) then an observer can be constructed in

such a way that for a matrix [
f= Az +4(y) + D(cz —y) (5)
Then, the error e(t) = =(t) — £(1) vanishes according to
€= (Dc+ Ae,

if the matrix Dc+ A is stable. Thus, one can find the state
z of the original system (1) througlh the inverse coordinate

transformation map z = T-(¢).

The problems concerning nonlinear observers are how
to characterize the observable nonlivear systems and how
to obtain a coordinate transformation map into the ob-
servable form. For the first question, Krener and Isidori [1]

obtained an answer as follows:

Theorem 1; The system (1),(2) is observable if and only
if the vector field g defined by

0. 0<k<n—-1
LyLi(h) = (6)
1, h=n-1
satisfies
l[g,adfgl =0, k=1.3,...2n-3 )]

Remark: Trom the Jacobi identity, the equivalent state-

ment to (7) is that

[arl}g,ad’,g] =0, 0<:j<n-—1 (8)



It is worthwhile to repeat the proof of Theorem I here.

Proof: (Suffiency) Since the n vector fields {g, adyg, ...,
ad} g} are commutative, one can choose coordinate sys-

tem £ such that for k=0,..,n —1

2 .
s (=1)"adjg. 9)
Then by (6),
Oh k ; k ; »
T =(—1)’°La¢‘;gh = g(q)( ) VLA Lo L5 (h)

0, 0<k<n—2
B I, k=n-1.

Hence, we obtain

y = ct.
If we let . 9
f= Z:]/z(l)gf:a
then

9 ) _ ¢ 0f 0
[f’ af7x—~l\] B ;f){n—k afz (10)

On the other hand, it follows {rom the definition that
. _ 0 ko gk
{f, ()—{n:] = [fa (-1) adfg]
_9
(?En—k—l )
Thus,from (10) and (11), we obtain for 0 < k <n —1,

af: _{ Lod=n—k-1L,

= (~1)ku,cljf+lg = -

(11)

a{n‘—k (12)

0, otherwise.

Since (12) holds for each of £ in a neighborhood of 0,
fi » 1 £t < n are linear functions of &, 2 < ¢ < n, but
may be nonlinear functions of &. Hence the form (3),(4)

Q.ED.

is obtained. Necessity is omitted.

n—1

Remark: Since {g, ad},---,ad;7'g} form a commuta-
tive basis for a tangent space T'Af of a n-dimensional man-
ifold Af, there exists a set of scalar functions a;(€),1 <7 <

n such that B

adjg = 3~ ai(§)ad;™g. (13)
However, since =
adtg = [f, ad}'g) (14)
) [2 I O%J =Y 9
we obtain that o
ai(§) = %

Furthermore, since f;, 1 < 7 < n are linear functions of

Eo, ooy €, a4, 1 <2 < noare functions of only §. Further,

940

a; is related to v; in such a way that

wi(y):/y:ai(s)ds+yo, for 1<i<n,  (16)

where the yg is an initial value of y.

3 Main Result

In this section we consider the problem of obtaining
a coordinate transformation map that yields a nonlinear
observer form. The first step must be to find the vector
field ¢ which satisfies the condition(6). Iowever, for an
arbitrary observable systeni it may be hard even to find
such a vector field g. For this problem, we propose the

following coordinate transformation map T': M — R",

h

Lfll

w="T(z) = (17)

L?“lh

Lemma [: The coordinate transformation map w =

T'(x) transforms the system {1),(2) into a canonical form

0
w o= Aw+ : = f(w), (18)
0
7(w)
y = cw = h(w) (19)
where y(w) = L}A(T(w)).
Proof:
0
w = Lpw=Aw+ : ,
0
L (T (w))
-1
dh
and dy = dhDT ' =dkL

Ly h

(1,0, 0] Q.E.D.

1l

Remark: The necessary and sufficient condition for the
system (1),(2) to be locally obscrvable is that the rank of
the observability matrix is equal to n at the equilibrium

point z., i.e.,



dh

I/!.(I/L (20)

rank
L;‘]tl/z

The existence of the diffeomorphism (17) follows {rom the
full rank condition (ebservability condition) (20). Hence,
each (locally) observable system, can be transformed into
the canonical form (18),(19) through coordinate change
(17).

The advantage of this coordinate change can be seen

from the following obscrvability matrix:

dh
L pdh
: (21
n—14j
L i dh
where I denotes the n x n dimensional identity matrix.

Hence, the vector ficld ¢ satisfying

Lng};L = {

is directly obtainable, t.c., g = (0,--

0, U<bk<n-2

22
1, k=n-1 22)

'10111’]"

Summarizing the above stateinent, we can say as fol-
lows: through the change of coordinate (17), all the lo-
cally observable system can be transformed into a canonical
form (18).(19), for which the vector ficld ¢ satisfying (22
is given by [0,---,0,1]7. That is, through the available
coordinate transformation map {17) cach locally observ-
able system can be transformed into the canonical form
(18),(19), which looks useful in the sense that the vector

field ¢ is obtained straightforwardly.

Ezxample: Consider the following Van der Pole oscillator

with a nonlinear output equation:

Ty = —a,

Ty o= L2+ 100 — 2}
2 = L2+ 0w, — 23
y = €7 -1

Then, through the coordinate transformation

|
lormy=1 Y =1 T |, (23)
wy Ly —xe™
we obtain the canonical form:
w, w,
= , (24)
[ i ] [ L ]

y = uq, (25)
where
2
20 . B2 1 D .. 23} = - Wy
L3h = e (25 — 1.22; — 102y + 23) ot 1)
w3

+ 10wy + —

12wy + Din(wy + 1) (wy+ 1)

For the system (23), the vector field ¢ satisfying (22) is
[0,1]T. However, since the commutativity of the vector
fields ¢ and adjg fails, the coordinate transformation map
changing the system (23) into the nonlincar observer form

does not exist.

4 Conclusion

I this work, a canonical form {or an observable nonlin-
ear system is postulated with an objective of obtaining the
vector field g which is necessary for the coordinate change
for an obscrver form. Further, one can obtain the corre-
sponding coordinate transformation map directly from the
vector field f and the output equation /.Hence, this canon-
ical form looks useful as an intermediate step to a complete
coordinate change to an observer form. The commutativ-
ity condition among the veetor fields g, adyg, - -+, a(l?"g
looks very strong. Hence, weakening this condition may be

an interesting topic for a future rescarch.
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