Degree of 2D Discrete Linear Shift-invariant System

and Reduction of 2D Rational Transfer Function

Shojiro SAKATA

Toyohashi University of Technology
Department of Production Systems Engineering

Tempaku, 440 Toyohashi

Abstract: In this paper we present a method of
determining the unknown degree of any 20 discrete
linear shift-invariant system which is charac-
terized only by the coefficients of the double
power series of a iransfer function, i.e. a 20
impuise response array. Our method is based on a
20 extension of Berlekamp-Massey algorithm for
synthesis of linear feedback shift registers, and
it gives a novel approach to identification and
approximation of 2D linear systems, which can be
distinguished in its simplicity and potential of
applicabilily from the other 2D Levinson-type
atgorithms. Furthermore, we can solve problems
of 20 Padé approximation and 2D system reduction
on a reasonable assumption in the context of 2D
linear systems theory.

1. Introduction

Signals and systems that depend on two or more
independent variables are involved in image
processing, control, geophysics and other areas.
In extending the one-dimensional (1D) system
theory to the multidimensional case, many
problems which are important practically as well
as theoretically remain to be solved or have not
been treated perfectly. Among them, there are
problems concerned with two-dimensional (2D)
state-space model, notion of controllability,
observability, minimality, pole-placement as well
as stabilization [1]-[3]. Now we are consider
the following three kinds of problems all of
which are important in identification and model
reduction of 2D discrete linear shift-invariant
(DLS1) systems.

First, in the 2D Hankel theory [4] the 2D
Hankel matrix is defined via the 2D impuise
response array, i.e. the coefficients of the
double power series into which the proper 2D ra-
tional transfer function is expanded: o
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(bog#0). 1
On the condition that we are given the 2D array
a=(aij) without any knowledge of both system
polynomials b(z|,29) and cz,29), the system
degree (m,n) of the 2D system can be determined
through the rank of the 2D Hankel matrix. This
is a natural extension of the 1D Hankel theory.
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However, it is very cumbersome and difficull to
obtain the rank of the 2D Hankel matrix since the
order of the 20 Hanke! matrix in general tends to
becone much greater as the system degree
increases. [lurthermore, there has not been given
any efficient method of identifying the given
system, i.e. of finding the coefficients of sys-
tem polynomials by means of the 2D Hankel matrix.
Example | (Kao and Chen [4]): For the 2D
transfer function of a 2D DLS! system over the
real number field R:
2122+21+222+1 (2)
(29+1)(29+2)2)+(29+2)29 '
we have the 2D impulse response array a shown in
Fig. 1. The 2D Hankel theory tells us that the
degree of a(zy,z9) is (m,n)=(1,2) only on the
basis of the rank of the Hankel matrix con-
structed from the array a.

2(21 ,Zz)z

] -2 4 -8 16 °-32 64.-128 .

0 1 -2 4 -8 16 -32 64

0 -1 5 -16 42

0 -1 7
0 1
0
Fig. 1. 2 2D impulse response array over the

real number field R (Kao and Chen [4]).

Second, a problem of two-variable Padé ap-
proximalion [5][6] consists of finding the
denominator polynomial 5(21,22)=
220" T joo"byj21 297 (bgg#0) and the numerator

R e = m
polynomial 5(21122)‘§:i=0 20 Cij21|22J of the
rational function s.t.
&(2y,29) P
—f1227 PR P PR P
BCzy,25) 21229020207 2 =g €121 2
for a given pover series o
alz) 2912 20" T 9" aj 21 ' 27,
8(21,22):=2 i:owzjzo‘”ai i2) IZZJ,
where €j=0 for Ci, ) )EE={(i,j) 1 i+j24m}. This
problem Is reduced to finding the polynomials



b(zy,2z9) and c(z,29) satisfying the identity (1)
and having a minimal degree (m n) by putting
n=m, b(zl,zz) =2 "25"i(zy i 12 1y and c(2y,29)=
22" (2 ,22 b,

Example 2 (Buchberger, Krishnamurthy and
Winkter [51): It is required to find the Padé
approximant ¢/b of degree (m,n)=(1,1) which
satisfies the following congruence over the field
K=GF(7): o

. z:-:Qliz-zoic--z,'zz{

Ziz0' T j= bjj2) 2!
= 3213+?1222+2?z +5212+62122+222+621+422+3

mod (2]4, 21 22, 412222, 2122 224> (4)
The Groebner basis algorithm [7] applied to the
ideal )
1=(32) 342 2242257452 2462, 212y 2462 14213,

vch

210 2)729, 217297, 21297, 237)
gives T=529%3€ | and 52521+522+1‘ It is known
that the Groebner basis algorithm has much
complexity, in particular in higher dimensions.
By the way, the righthand side of the congruence
(4) corresponds to the finite array shown in Fig.
2.

Fig. 2. a finite 20 array over the Galois field
GF(T).

Third, for the minimal implementation of a 2D
system, it is required to reduce a given 20 ra-
tional function o
c(z,29) 220" j=0"Cn-i,n-j?1 22"
b(z).2)) =" j2o"by- i, n-j21 22

5)

6(21,22):

to an irreducible one. A method of solving the
problem has heen proposed on the basis of resul-
tant matrix of polynomials b(zl,zz) and c(21,22)
[8]1. Aithough the method does not have the draw-
back of coefficient growth during the process of
the multivariable Euclidean algorithm, it still
has much computational complexity of 0¢(mn)3) in
Gauss elimination of the resultant matrix having
order mn, where mn is the size of the given data
I,j and Cije Expanding the given rational func-
tion (5), we ohtaln a double power series I
Ej:0°° 2y 'z97) * and then we have again the
prohlem o% finding the denominator and numerator
polynomials having the possible minimal degree
(m,n) and satisfying the identity (1).

LI b00=0, then it is not always possible to
determine the power series consistently and
uniquely. In our context, it is enough to con-
sider the proper rational function, for which bgyg
#0.
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Example 3. The rational function over R:
< 2)%2y%422 22422 22,42, 2432 2942 Bezyhz,

b 2%z Fagee Sayter Ty gz Zageaz g e

(6)
can be reduced to the irreducibie form:
22"’1 (7)
21“22.2?{

by finding the linearly dependent relations among
the rows of the corresponding resultant matrix.
By the way, the above rational fuction is ex-
panded into the power series

Z 2072 20722 27,
where the Loet#|01ent array a= (aIJ) is shown in
Fig. 3.

Fig. 3. a 2D impulse response array over the
real number field R.

In the above three kinds of probiems, we need
to find the polynomials b(z,29) and c(z},29)
satisfylng

Zy=0' £ 1=07bk18i -k, j- 1= =jj»

for Ci,00 €T ¢y, ny (8a)
and
Z=0" T 20" bk 2 -k, 1505
for (L, D€ Z(pi1,00UE(0,nt1)r (8D
where

F(mn) KiJ)IOSiSm,OSJSnL

2 (wt1,0)° H{L, D izmtl, j20},

o, nt1) =G D 120, jZntl}.
If it is pOSSIhIP to find b(z 22) satisfying
(8b), then it is easy to obtain c(zl,zz) by using
(Ba). At any way, we are treating a single quad-
ranl causal AR Cor ARMA) model which is defined
on £4i=2p2, i.e. the set of all pairs p=(py,py)
of nonnegative integers ny and P9y where it has a
suitable model degree (m,n), i.e. a window W=
F‘(m n - For a while, we assume a priori that
Cun =0." On this assumplion, we have the ideniity
(8b) for any (i,j)€ X ={(p€ Tyl wSp}, vhere
wi=(n,n) and the partial order = over 230 is
defined as follows!

p=(p|,pg) Sa=Cay,ay) iff pySqq and pySay.



In this paper, we will consider first how to
find the polynomial b(z|,29) which satisfies (8b)
for (i,j)e Z,, and has the ’minimal’ degree
w=(m,n), where the notion of minimal degree
should coinside with that determined based on the
rank of the 20 Hanke! matrix. Afterwards, we
will consider the case where the assumption Cpn=0
Yoes not hold. Our approach can be regarded as
an extension of the method by Conan [9] to two
dimensions. To avoid the problem of errors in
numerical computation, we sometimes discuss about
2D DLS! systems over a finile field [10]. But,
any system over the real or complex number field
can he treated similar]y.

2. Minimal polynomial set for a given 2D array

In the present chapter, we focus our attention
to the problem of finding the polynomial
5= . Ms N . o)
h(zy,29)=2 120" T jog"by- i, n- j21 20! (bo# 0D
satisfying

bmnai-m,j'nj'bm-l,nai-m+1,j-n+"'+b00aij:0’
(i,)ez,
for a given 2D array (aij)' As a convention, we
put f(Zl,Zz):Z i:OIHEJ’:OnfijZIIZZJ:: b(Zl,Zz),

vhere fij=b in particular fg (=bgy)#0.

m-i,n-j’
Then, we have a linear recurring (LR) relation
which must be satisfied by the given 2D array
a=(ay)!

Treyfrapig-y70, a€ 2. 9
In our situation, we have nothing but the data
(a,) and we have no assumption or knowledge of
the mode!l degree w=(m,n). Thus, we should be led
to explore a polynomial f satisfying (9) and
having a minimal degree w=v, where the term
‘minimal’ means that there exists no polynomial f
“satisfying (9) and having some degree w<v, i.e. w
=v and w#v. This is almost the same situation
as treated before by us [11]. In the following,
we review briefly several fundamental concepts
about LR relations or bivariate poiynomials and
then we reformulate our probiem exactly.

Let K be any field; K may be the set of real or
complex numbers or the Galois field GF(q) of q
elements, where q is a power p of a prime in-
teger p. Over the 2D lattice 230=202, we intro-
duce the total ordering <1 as follows:

012(0,0)<T(1,0)<T(0,1)<T(2,0)<T(1,1)

<r(0,2)<p(3,0)<7. ..

By the way, p=qq iff p<rq or p=q. By the totad
degree ordering <p, we have the one-to-one cor-
respondence | | 1Z4-Zy. Thus, 1(0,0)1 =0,
I (1,00 I =1, 1C0,1)1=2, Furthermore, for a
*point’ p=(p1,p2)€ Z 4, we have the "next' point
of p=(pj,py) as follows:

p+l::<P1'l,p2+l) if plél;

1=(pytl,0) if p1=0.

For p,q€ Z, the usual vector sum and difference
are denoted as ptyg and p-q, respectively. For
t,pe Ty, let
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z tp2={q€ 20 | t§q<Tp}.
For pe =y, a finite 2D array a=(aq) of size k=
I pl over the field K is a mapping a from Zlop

into K. Similarly, a perfect (infinite) 2D array

a=(aq) is a mapping from T into K. For a 2D

array a and p€ T, aPi= (aql 9€ ZoP) is the

restriction of the original array a within Elop.
Let

= 5 f,2l 10
f qerfq2 (10)

be a polynomial, an element of the bivariate
polynomial ring K[2]2=k[21,22] over K, where
2%=2)8 257 and Tei={ge 2ol fy#0}. The
degree Deg(f) of f is defined to be the maximum
element g of [‘f w.r.t. the total degree ordering
<. In particglar, a polynemial of the form

f== i:O"‘ZjZO”fijzl '22J (fmn¢0>
has just the degree (m,n) in our definition.
Corresponding to a polynomial (10) with Deg(f)=s,
the LR relation at a point pe 230 for an array a
is written as

1=, F fadarp-s0- an

For a finite array a=af, a polynomial f is said
to be valid Cup to r) iff either r&qs or the
identily (11) holds for any p€ 7. For a per-
fect array a, f is said to be vatid iff (11)
holds for any p€ ES.

Example 4. For the perfect array over the
Galois field GF(2) (Prabhu and Bose [10]), part
of which is shown in Fig. 4,

f=212222+222+2122+21 +21
is valid at any point q&(2,2).

Fig. 4. a 20 impulse response array over the
Galois field GF(2) (Prabhu and Bose [10]).

For any array a, VALPOL(a) is defined to be the
set of all valid polynomials for the array a. By
the way, for any perfect array a, VALPOL(a) is an
ideal of K[2] [12].

We are trying to find a polynomial f having a
minimal degree. Since several polyhomials in
VALPOLCa) possibly have a distinct minimal
degree, we introduce the following definition:



Definition 1: A finite subset F of K[z] is
said to be a 'minimal polynomial set’ for a given
2D array a iff all the following conditions are
satisfied:

(1) FCVALPOL(a);

(2) S:={Deg(f) | f€F} is ’"nondegenerate’,
where a finite subset S of T is said to be non-

degenerate iff there does not exist any couple
s,t€S5 s.t. s=t and s#t,

(3) there does not exists any polynomial g
s.t. g€ VALPOL(a) and Deg(g) € A(F)=Zy/Zg,
where / is the set difference operator and ZZS:=
UsesZs- )

We remark that A(F) is unique for the array a
by the definition and it can be denoted as A(a),
but that the set F is not unique for a. Thus,
the class FF(a) of all minimal polynomial sets
for a is introduced. Obviously, if pSq7q and
aP=(aDP, then AGPYCAGD.

3. Application of 2D Berlekamp-Massey algorithm

In our paper quoted above [11], we have
proposed a 2D extension of Berlekamp-Massey algo-
rithm for finding a minimal polynomial set F€
FF(aP) of a given finite array aP. During the
iteralive process, we keep and/or update F€
FF(a9) and §={s=Deg(f) | fEF} at every point q€
2oP. The outline of the algorithm is as
follows:

2D Berlekamp-Massey Algorithm (Outline):

(Step 1) q:=0; F:={1}; 5:={0}; (A:=¢;)
(Step 2) If Fyi={feF| flal,#0} is nonemply,
update F by using gN and some past
information; in particular, if
Syn:={s=Deg(f) | fEFy, q-s€ A} is
nonempty, then S is updated, i.e.
A is replaced by A\J]‘q_suu, where
I“q_swi={te 20 | téQ‘S, 3 SESNN)-
(Step 3) q:i=q+l; if a=p then stop,
else go to Step 2.

Before applying the algorithm to solve our
problem, we remark that, if the given array does
not adwit the solution polynomial f, i.e. the
denominator polynomial of the desired rational
function, s.t. f[a]w=0, in the other words, the
LR relation is valid only for (i,j) s.t. i>m or
j>n, then we can neglect the first row (i=0) or
the first column (j=0) of the original array lo
have an array w.r.t. which the LR relation is
valid for any (i,j)€ Z,,. In the following, we

show how to solve the three kinds of problems
mentioned in Chapter 1 by taking examples.

Example 5 (Example | revisited): Applying the
algorithm to the array in Fig. 1, we have the
unique polynomial z)“z9tz“t2 29 which remains
valid after any number of iterations. But, this
polynomial does not satisfy the identity (8b) at
(i,j) s.t. i=0,1. Next, applying the algorithm
to two arrays a’ and a” which are obtained by
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deleting the first row and column, respectively,
we have the resulting polynomiais:

2)29tzytz) and 21222+222+32122+222+221,
among which only the latter satlisfies the iden-
tity (8b) for any (i,j§) s.t. i>m or j>n. Thus,
we have m=1, n=2, b(2y,29)=229 +222+32122+222
+2zy, and, in view of the identity (8a),
v(z\,22)=z‘22+222+21+1, which. just coinsides with
the desired solution and is consistenmt with the
result of the 2D Hankel theory [4].

Exanple 6 (Example 2 revisited): Applying the
algorithm to the array shown in Fig. 2, which
corresponds to the righthand side of the con-
gruence (4), we have the polynomial b(zl,zz)=
2122+522+521; Thus, we have the desired
denominator b(21,22)=2122f(21‘1,22'1):521+522+l,
and, in view of the identity (8a), the numerator
E(2y,29) =524943.

Exanple 7 (Example 3 revisited): Applying the
algorithm Lo the array shown in Fig. 3, we have
the desired polynomials b(z],zz):zlzzz +] and
c(zy,29)729t1.

In general, after a proper number of

iterations, i.e. at a certain point p, we have a
minimal set F of polynomials to which the desired
system polynomial f belongs. The other polyno-
mials in F turn out to be not valid at some point
awvay from the point p or fail to satisfy the
identity (8b) for some (i,j) s.t. i>m or j>n.
The following uniqueness theorem [13] gives a
criterion about whether the desired polynomial f
has heen obtained already at a certain point p.

Theorem 1: Let FEFF(aP), feF with s=Deg(f)=

'p and A=ACP). If p-s¢ A, then the polynomial

f € VALPOL(aP) having the degree s is unique up to
scatlar multiplication.

In particular, for the second kind of problem
(e.g. Example 2), we have the corollary.

Corollary 1. Let FeFF(aP), p=(4m,0) and feFf
with Deg(f)=(w,m). Then, ithe polynomial f€
VALPOL(aP) having the degree (m,m) is unique up
to scalar muitiplication.

It is proven thal the computational complexity
of the algorithm is of order O(dz), vwhere d is
the size of part of the array which has been
examined, i.e. the value 1 p1lt for the point p at
which the iteration of the algorithm has been
stopped. Therefore, in view of Theorem 1, it is
of order 0(n?n2), provided that the system has
degree (m,n).

4. Concluding remarks

We have proposed a method for determining the
system function and the system degree of a 20
DLS1 system over any field which is characterized
only by its 2D impulse response array defined on
the integral lattice of the first quadrant of the
20 ptane. This method is based on an extension
of Berdekamp-Massey algorithm to iwo dimensions
[11], where the original (1D) Berlekamp-Massey
algorithm is for synthesizing a shortest linear



feedback shift register capable of generating a
given finite sequence over any field. This ap-
proach gives an insight into the concept of
‘minimality’ in partial realization of 2D dis-
crete linear systems. Qur method is also ap-
plicable to muitidimensional Padé approximation
as well as reduction of system degree on the as-
sumption that there exists a proper-solution. It
is known that the 1D Berlekamp-Massey aigorithm
is equivalent to Levinson-Trench algorithm.
Several aulhors [14]-[16] have proposed 2D
Levinson-iype afgorithms for identification or
approximation of 2D Iipear systems, where the
block Teeplitz structure is scrutinized. Our ap-
proach can be distinguished from them by its
simplicity and potential of wide applicability.
By the way, our method can be applied to not only
a2 2D impuise response array (first-order data)
but also ils autocorrelation array (second-order
data) (141, since the lattier also satisfies a
similar form of linear recurring relation.
Furthermore, our algorithm has as little computa-
tional complexity as the other Levinson-type
algorithms, and so our method is effective and
efficient in identification of 2D systems having
a large degree.

In this paper, we do not deal with the problem on
numerical errors incurred during the process of
compuiation and many other important problems in
identification and approximation of real 20
systems, e.g. stability, which will be our future
problems. In near future, we will extend our ap-
proach to the multivariable (i.e. multi-input and
multi-output) multidimensional systems.
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